BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

447 related articles for article (PubMed ID: 18702895)

  • 1. Histological and immunological observations of bacterial and allergic chronic rhinosinusitis in the mouse.
    Wang H; Lu X; Cao PP; Chu Y; Long XB; Zhang XH; You XJ; Cui YH; Liu Z
    Am J Rhinol; 2008; 22(4):343-8. PubMed ID: 18702895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and immunopathological characteristics of an Alternaria-induced chronic rhinosinusitis mouse model.
    Shin SH; Ye MK; Lee DW; Chae MH; Choi SY
    PLoS One; 2020; 15(6):e0234731. PubMed ID: 32544181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mouse model of Aspergillus and Alternaria induced rhinosinusitis.
    Ahn BH; Park YH; Shin SH
    Auris Nasus Larynx; 2009 Aug; 36(4):422-6. PubMed ID: 19084360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Staphylococcus aureus enterotoxin B contributes to induction of nasal polypoid lesions in an allergic rhinosinusitis murine model.
    Kim DW; Khalmuratova R; Hur DG; Jeon SY; Kim SW; Shin HW; Lee CH; Rhee CS
    Am J Rhinol Allergy; 2011; 25(6):e255-61. PubMed ID: 22185735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of Aspergillus protease with ovalbumin-induced allergic chronic rhinosinusitis model in the mouse.
    Kim JH; Yi JS; Gong CH; Jang YJ
    Am J Rhinol Allergy; 2014; 28(6):465-70. PubMed ID: 25514482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of oral tolerance in a mouse model of allergic rhinitis.
    Shin JH; Kang JM; Kim SW; Cho JH; Park YJ; Kim SW
    Otolaryngol Head Neck Surg; 2010 Mar; 142(3):370-5. PubMed ID: 20172383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intranasal application of Epstein-Barr virus/lipoplex to abrogate eosinophillia in murine model of allergic rhinitis.
    Han DM; Zhou B; Wang T; Wang XD; Fan EZ
    Chin Med J (Engl); 2006 Jun; 119(12):991-7. PubMed ID: 16805982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An essential role for dendritic cells in human and experimental allergic rhinitis.
    KleinJan A; Willart M; van Rijt LS; Braunstahl GJ; Leman K; Jung S; Hoogsteden HC; Lambrecht BN
    J Allergy Clin Immunol; 2006 Nov; 118(5):1117-25. PubMed ID: 17088138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eotaxin-1, -2, and -3 immunoreactivity and protein concentration in the nasal polyps of eosinophilic chronic rhinosinusitis patients.
    Yao T; Kojima Y; Koyanagi A; Yokoi H; Saito T; Kawano K; Furukawa M; Kusunoki T; Ikeda K
    Laryngoscope; 2009 Jun; 119(6):1053-9. PubMed ID: 19296494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interleukin-17A-induced inflammation does not influence the development of nasal polyps in murine model.
    Hong SL; Zhang YL; Kim SW; Kim DW; Cho SH; Chang YS; Lee CH; Rhee CS
    Int Forum Allergy Rhinol; 2015 May; 5(5):363-70. PubMed ID: 25754984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. IFATS collection: Immunomodulatory effects of adipose tissue-derived stem cells in an allergic rhinitis mouse model.
    Cho KS; Park HK; Park HY; Jung JS; Jeon SG; Kim YK; Roh HJ
    Stem Cells; 2009 Jan; 27(1):259-65. PubMed ID: 18832595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aggravation of bronchial eosinophilia in mice by nasal and bronchial exposure to Staphylococcus aureus enterotoxin B.
    Hellings PW; Hens G; Meyts I; Bullens D; Vanoirbeek J; Gevaert P; Jorissen M; Ceuppens JL; Bachert C
    Clin Exp Allergy; 2006 Aug; 36(8):1063-71. PubMed ID: 16911362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction of airway remodeling of nasal mucosa by repetitive allergen challenge in a murine model of allergic rhinitis.
    Lim YS; Won TB; Shim WS; Kim YM; Kim JW; Lee CH; Min YG; Rhee CS
    Ann Allergy Asthma Immunol; 2007 Jan; 98(1):22-31. PubMed ID: 17225716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histologic and immunologic observations of viral-induced rhinosinusitis in the mouse.
    Ramadan HH; Meek RB; Dawson GS; Spirou GA; Cuff CF; Berrebi AS
    Am J Rhinol; 2002; 16(1):61-7. PubMed ID: 11895196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of natural killer T cells in the sinus mucosa from asthmatics with chronic sinusitis.
    Yamamoto H; Okamoto Y; Horiguchi S; Kunii N; Yonekura S; Nakayama T
    Allergy; 2007 Dec; 62(12):1451-5. PubMed ID: 17711556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Submucous turbinectomy combined with posterior nasal neurectomy in the management of severe allergic rhinitis: clinical outcomes and local cytokine changes.
    Ogawa T; Takeno S; Ishino T; Hirakawa K
    Auris Nasus Larynx; 2007 Sep; 34(3):319-26. PubMed ID: 17433591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of genetic background on the response to bacterial sinusitis in mice.
    Kirtsreesakul V; Luxameechanporn T; Klemens JJ; Thompson K; Naclerio RM
    Arch Otolaryngol Head Neck Surg; 2006 Oct; 132(10):1102-8. PubMed ID: 17043259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppression of allergic response by CpG motif oligodeoxynucleotide-house-dust mite conjugate in animal model of allergic rhinitis.
    Mo JH; Park SW; Rhee CS; Takabayashi K; Lee SS; Quan SH; Kim IS; Min IY; Raz E; Lee CH
    Am J Rhinol; 2006; 20(2):212-8. PubMed ID: 16686392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of glucan treatment on the Th1/Th2 balance in patients with allergic rhinitis: a double-blind placebo-controlled study.
    Kirmaz C; Bayrak P; Yilmaz O; Yuksel H
    Eur Cytokine Netw; 2005 Jun; 16(2):128-34. PubMed ID: 15941684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IL-16 variability and modulation by antiallergic drugs in a murine experimental allergic rhinitis model.
    Akiyama K; Karaki M; Kobayshi R; Dobashi H; Ishida T; Mori N
    Int Arch Allergy Immunol; 2009; 149(4):315-22. PubMed ID: 19295235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.