These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 18703070)
1. Antifungal activity of the termite alkaloid norharmane against the mycelial growth of Metarhizium anisopliae and Aspergillus nomius. Chouvenc T; Su NY; Elliott MI J Invertebr Pathol; 2008 Nov; 99(3):345-7. PubMed ID: 18703070 [TBL] [Abstract][Full Text] [Related]
2. Isolation and characterization of norharmane from Reticulitermes termites (Isoptera: Rhinotermitidae). Siderhurst MS; James DM; Rithner CD; Dick DL; Bjostad LB J Econ Entomol; 2005 Oct; 98(5):1669-78. PubMed ID: 16334338 [TBL] [Abstract][Full Text] [Related]
3. Resource competition between two fungal parasites in subterranean termites. Chouvenc T; Efstathion CA; Elliott ML; Su NY Naturwissenschaften; 2012 Nov; 99(11):949-58. PubMed ID: 23086391 [TBL] [Abstract][Full Text] [Related]
4. Effect of norharmane in vitro on juvenile hormone epoxide hydrolase activity in the lower termite, Reticulitermes speratus. Itakura S; Kawabata S; Tanaka H; Enoki A J Insect Sci; 2008; 8():13. PubMed ID: 20345286 [TBL] [Abstract][Full Text] [Related]
5. Interaction between the subterranean termite Reticulitermes flavipes (Isoptera: Rhinotermitidae) and the entomopathogenic fungus Metarhizium anisopliae in foraging arenas. Chouvenc T; Su NY; Elliott ML J Econ Entomol; 2008 Jun; 101(3):885-93. PubMed ID: 18613591 [TBL] [Abstract][Full Text] [Related]
6. Subterranean termite prophylactic secretions and external antifungal defenses. Hamilton C; Lay F; Bulmer MS J Insect Physiol; 2011 Sep; 57(9):1259-66. PubMed ID: 21708164 [TBL] [Abstract][Full Text] [Related]
7. Pathogenicity of a new China variety of Metarhizium anisopliae (M. Anisopliae var. Dcjhyium) to subterranean termite Odontotermes formosanus. Dong C; Zhang J; Huang H; Chen W; Hu Y Microbiol Res; 2009; 164(1):27-35. PubMed ID: 17482440 [TBL] [Abstract][Full Text] [Related]
8. Laboratory and field evaluation of Metarhizium anisopliae var. anisopliae for controlling subterranean termites. Hussain A; Ahmed S; Shahid M Neotrop Entomol; 2011; 40(2):244-50. PubMed ID: 21584407 [TBL] [Abstract][Full Text] [Related]
9. When subterranean termites challenge the rules of fungal epizootics. Chouvenc T; Su NY PLoS One; 2012; 7(3):e34484. PubMed ID: 22470575 [TBL] [Abstract][Full Text] [Related]
10. A Lab-Based Study of Temperate Forest Termite Impacts on Two Common Wood-Rot Fungi. Martin JS; Bulmer MS Environ Entomol; 2018 Dec; 47(6):1388-1393. PubMed ID: 30192929 [TBL] [Abstract][Full Text] [Related]
11. The Influence of Allogrooming Behavior on Individual Innate Immunity in the Subterranean Termite Reticulitermes chinensis (Isoptera: Rhinotermitidae). Liu L; Wang W; Liu Y; Sun P; Lei C; Huang Q J Insect Sci; 2019 Jan; 19(1):. PubMed ID: 30649425 [TBL] [Abstract][Full Text] [Related]
12. Cellular encapsulation in the eastern subterranean termite, Reticulitermes flavipes (Isoptera), against infection by the entomopathogenic fungus Metarhizium anisopliae. Chouvenc T; Su NY; Robert A J Invertebr Pathol; 2009 Jul; 101(3):234-41. PubMed ID: 19463828 [TBL] [Abstract][Full Text] [Related]
13. Prospects for the biological control of subterranean termites (Isoptera: rhinotermitidae), with special reference to Coptotermes formosanus. Culliney TW; Grace JK Bull Entomol Res; 2000 Feb; 90(1):9-21. PubMed ID: 10948359 [TBL] [Abstract][Full Text] [Related]
14. The physiological effects of multi-walled carbon nanotubes (MWCNTs) on conidia and the development of the entomopathogenic fungus, Metarhizium anisopliae (Metsch.) Sorok. Gorczyca A; Kasprowicz MJ; Lemek T J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(6):741-52. PubMed ID: 24521419 [TBL] [Abstract][Full Text] [Related]
15. In vitro effect of pesticides on the germination, vegetative growth, and conidial production of two strains of Metarhizium anisopliae. Schumacher V; Poehling HM Fungal Biol; 2012 Jan; 116(1):121-32. PubMed ID: 22208607 [TBL] [Abstract][Full Text] [Related]
16. Relationship between virulence and repellency of entomopathogenic isolates of Metarhizium anisopliae and Beauveria bassiana to the termite Macrotermes michaelseni. Mburu DM; Ochola L; Maniania NK; Njagi PG; Gitonga LM; Ndung'u MW; Wanjoya AK; Hassanali A J Insect Physiol; 2009 Sep; 55(9):774-80. PubMed ID: 19442668 [TBL] [Abstract][Full Text] [Related]
17. Antifungal activity of β-carbolines on Penicillium digitatum and Botrytis cinerea. Olmedo GM; Cerioni L; González MM; Cabrerizo FM; Rapisarda VA; Volentini SI Food Microbiol; 2017 Apr; 62():9-14. PubMed ID: 27889171 [TBL] [Abstract][Full Text] [Related]
18. Alteration of Termite Locomotion and Allogrooming in Response to Infection by Pathogenic Fungi. Hassan A; Huang Q; Mehmood N; Xu H; Zhou W; Gao Y J Econ Entomol; 2021 Jun; 114(3):1256-1263. PubMed ID: 33909076 [TBL] [Abstract][Full Text] [Related]
19. Characterization of a newly discovered China variety of Metarhizium anisopliae (M. anisopliae var. dcjhyium) for virulence to termites, isoenzyme, and phylogenic analysis. Dong C; Zhang J; Chen W; Huang H; Hu Y Microbiol Res; 2007; 162(1):53-61. PubMed ID: 16949807 [TBL] [Abstract][Full Text] [Related]
20. Species of the Metarhizium anisopliae complex with diverse ecological niches display different susceptibilities to antifungal agents. Brancini GTP; Tonani L; Rangel DEN; Roberts DW; Braga GUL Fungal Biol; 2018 Jun; 122(6):563-569. PubMed ID: 29801801 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]