BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 18703196)

  • 1. Age-related changes in porosity and mineralization and in-service damage accumulation.
    Norman TL; Little TM; Yeni YN
    J Biomech; 2008 Sep; 41(13):2868-73. PubMed ID: 18703196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microcracks colocalize within highly mineralized regions of cortical bone tissue.
    Wasserman N; Yerramshetty J; Akkus O
    Eur J Morphol; 2005; 42(1-2):43-51. PubMed ID: 16123023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The degree and distribution of cortical bone mineralization in the human femoral shaft change with age and sex in a microradiographic study.
    Bergot C; Wu Y; Jolivet E; Zhou LQ; Laredo JD; Bousson V
    Bone; 2009 Sep; 45(3):435-42. PubMed ID: 19501681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatigue microcracks that initiate fracture are located near elevated intracortical porosity but not elevated mineralization.
    Turnbull TL; Baumann AP; Roeder RK
    J Biomech; 2014 Sep; 47(12):3135-42. PubMed ID: 25065731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accretion of bone quantity and quality in the developing mouse skeleton.
    Miller LM; Little W; Schirmer A; Sheik F; Busa B; Judex S
    J Bone Miner Res; 2007 Jul; 22(7):1037-45. PubMed ID: 17402847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age-related changes in the human femoral cortex.
    Simmons ED; Pritzker KP; Grynpas MD
    J Orthop Res; 1991 Mar; 9(2):155-67. PubMed ID: 1992064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone microdamage and skeletal fragility in osteoporotic and stress fractures.
    Burr DB; Forwood MR; Fyhrie DP; Martin RB; Schaffler MB; Turner CH
    J Bone Miner Res; 1997 Jan; 12(1):6-15. PubMed ID: 9240720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The bone mineralization density distribution as a fingerprint of the mineralization process.
    Ruffoni D; Fratzl P; Roschger P; Klaushofer K; Weinkamer R
    Bone; 2007 May; 40(5):1308-19. PubMed ID: 17337263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Age-related mineralization heterogeneity changes in trabecular bone of the proximal femur.
    Bloebaum RD; Lundeen GA; Shea JE; Whitaker EL
    Anat Rec A Discov Mol Cell Evol Biol; 2004 Dec; 281(2):1296-302. PubMed ID: 15386275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone material properties and mineral matrix contributions to fracture risk or age in women and men.
    Burr DB
    J Musculoskelet Neuronal Interact; 2002 Mar; 2(3):201-4. PubMed ID: 15758433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the role of bone damage in calcium homeostasis.
    Martínez-Reina J; García-Aznar JM; Domínguez J; Doblaré M
    J Theor Biol; 2008 Oct; 254(3):704-12. PubMed ID: 18625247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The degree of mineralization of bone tissue measured by computerized quantitative contact microradiography.
    Boivin G; Meunier PJ
    Calcif Tissue Int; 2002 Jun; 70(6):503-11. PubMed ID: 12019458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo linear microcracks of human femoral cortical bone remain parallel to osteons during aging.
    Wasserman N; Brydges B; Searles S; Akkus O
    Bone; 2008 Nov; 43(5):856-61. PubMed ID: 18708177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Black bears with longer disuse (hibernation) periods have lower femoral osteon population density and greater mineralization and intracortical porosity.
    Wojda SJ; Weyland DR; Gray SK; McGee-Lawrence ME; Drummer TD; Donahue SW
    Anat Rec (Hoboken); 2013 Aug; 296(8):1148-53. PubMed ID: 23728917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accumulation of in-vivo fatigue microdamage and its relation to biomechanical properties in ageing human cortical bone.
    Zioupos P
    J Microsc; 2001 Feb; 201(Pt 2):270-8. PubMed ID: 11430140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative backscattered electron imaging of bone in proximal femur fragility fracture and medical illness.
    Sutton-Smith P; Beard H; Fazzalari N
    J Microsc; 2008 Jan; 229(Pt 1):60-6. PubMed ID: 18173645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Up-regulation of site-specific remodeling without accumulation of microcracking and loss of osteocytes.
    Da Costa Gómez TM; Barrett JG; Sample SJ; Radtke CL; Kalscheur VL; Lu Y; Markel MD; Santschi EM; Scollay MC; Muir P
    Bone; 2005 Jul; 37(1):16-24. PubMed ID: 15908291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone mineralization density distribution in health and disease.
    Roschger P; Paschalis EP; Fratzl P; Klaushofer K
    Bone; 2008 Mar; 42(3):456-66. PubMed ID: 18096457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationships of loading history and structural and material characteristics of bone: development of the mule deer calcaneus.
    Skedros JG; Hunt KJ; Bloebaum RD
    J Morphol; 2004 Mar; 259(3):281-307. PubMed ID: 14994328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationships between density and Young's modulus with microporosity and physico-chemical properties of Wistar rat cortical bone from growth to senescence.
    Vanleene M; Rey C; Ho Ba Tho MC
    Med Eng Phys; 2008 Oct; 30(8):1049-56. PubMed ID: 18406196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.