BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 18703343)

  • 1. K-shell X-ray fluorescence measurements of arsenic depth-dependent concentration in polyester resin discs using the fundamental parameter method.
    Gherase MR; Fleming DE
    Appl Radiat Isot; 2009 Jan; 67(1):50-4. PubMed ID: 18703343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous detection of As and Se in polyester resin skin phantoms.
    Gherase MR; Vallee ME; Fleming DE
    Appl Radiat Isot; 2010; 68(4-5):743-5. PubMed ID: 19819714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A calibration method for proposed XRF measurements of arsenic and selenium in nail clippings.
    Gherase MR; Fleming DE
    Phys Med Biol; 2011 Oct; 56(20):N215-25. PubMed ID: 21937772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A method detection limit for potential in vivo arsenic measurements with a 50 W x-ray tube.
    Studinski RC; McNeill FE; O'Meara JM; Chettle DR
    Phys Med Biol; 2006 Nov; 51(21):N381-7. PubMed ID: 17047256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility of measuring arsenic and selenium in human skin using in vivo x-ray fluorescence (XRF)--a comparison of methods.
    Shehab H; Desouza ED; O'Meara J; Pejović-Milić A; Chettle DR; Fleming DE; McNeill FE
    Physiol Meas; 2016 Jan; 37(1):145-61. PubMed ID: 26683849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Simple quantitation of arsenic by energy dispersive fluorescence X-ray spectrometer using Reinsch's test].
    Ozo Y; Yoshizawa M; Murata A; Shimazaki S; Kajiwara M; Takagi T; Sato Y
    Chudoku Kenkyu; 2004 Oct; 17(4):359-64. PubMed ID: 15678930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of trace arsenic in soils by field-portable X-ray fluorescence spectrometry: considerations for sample preparation and measurement conditions.
    Parsons C; Margui Grabulosa E; Pili E; Floor GH; Roman-Ross G; Charlet L
    J Hazard Mater; 2013 Nov; 262():1213-22. PubMed ID: 22819961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time monitoring of arsenic filtration by granular ferric hydroxide.
    Fleming DE; Eddy IS; Gherase MR; Gibbons MK; Gagnon GA
    Appl Radiat Isot; 2010; 68(4-5):821-4. PubMed ID: 19850486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated determination of mercury and arsenic in extracts from ancient papers by integration of solid-phase extraction and energy dispersive X-ray fluorescence detection using a lab-on-valve system.
    Alcalde-Molina M; Ruiz-Jiménez J; Luque de Castro MD
    Anal Chim Acta; 2009 Oct; 652(1-2):148-53. PubMed ID: 19786175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of handheld X-ray fluorescence spectrometry units for identification of arsenic in treated wood.
    Block CN; Shibata T; Solo-Gabriele HM; Townsend TG
    Environ Pollut; 2007 Jul; 148(2):627-33. PubMed ID: 17241725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localization and speciation of arsenic and trace elements in rice tissues.
    Smith E; Kempson I; Juhasz AL; Weber J; Skinner WM; Gräfe M
    Chemosphere; 2009 Jul; 76(4):529-35. PubMed ID: 19345396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of a method detection limit for an in vivo XRF arsenic detection system.
    Studinski RC; McNeill FE; Chettle DR; O'Meara JM
    Phys Med Biol; 2005 Feb; 50(3):521-30. PubMed ID: 15773727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizing arsenic in preserved hair for assessing exposure potential and discriminating poisoning.
    Kempson IM; Henry D; Francis J
    J Synchrotron Radiat; 2009 May; 16(Pt 3):422-7. PubMed ID: 19395809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Analysis of films by X-ray fluorescence spectrometry].
    Han XY; Zhuo SJ; Wang PL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Jan; 26(1):159-65. PubMed ID: 16827370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electroadsorption-assisted direct determination of trace arsenic without interference using transmission X-ray fluorescence spectroscopy.
    Jiang TJ; Guo Z; Liu JH; Huang XJ
    Anal Chem; 2015 Aug; 87(16):8503-9. PubMed ID: 26211572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing arsenic in human toenail clippings using portable X-ray fluorescence.
    Fleming DEB; Crook SL; Evans CT; Nader MN; Atia M; Hicks JMT; Sweeney E; McFarlane CR; Kim JS; Keltie E; Adisesh A
    Appl Radiat Isot; 2021 Jan; 167():109491. PubMed ID: 33121893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coherent normalization of finger strontium XRF measurements: feasibility and limitations.
    Zamburlini M; Pejović-Milić A; Chettle DR
    Phys Med Biol; 2008 Aug; 53(15):N307-13. PubMed ID: 18635898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid limit tests for metal impurities in pharmaceutical materials by X-ray fluorescence spectroscopy using wavelet transform filtering.
    Arzhantsev S; Li X; Kauffman JF
    Anal Chem; 2011 Feb; 83(3):1061-8. PubMed ID: 21222440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Novel identification of donkeyhide glue by X-ray fluorescence analysis].
    Wang WJ; Guan Y; Zhu YY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Sep; 27(9):1866-8. PubMed ID: 18051549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo K-shell X-ray fluorescence bone lead measurements in young adults.
    Ahmed N; Osika NA; Wilson AM; Fleming DE
    J Environ Monit; 2005 May; 7(5):457-62. PubMed ID: 15877166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.