BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 18703537)

  • 1. The electrochemical basis of odor transduction in vertebrate olfactory cilia.
    Kleene SJ
    Chem Senses; 2008 Nov; 33(9):839-59. PubMed ID: 18703537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging odor-induced calcium transients in single olfactory cilia: specificity of activation and role in transduction.
    Leinders-Zufall T; Greer CA; Shepherd GM; Zufall F
    J Neurosci; 1998 Aug; 18(15):5630-9. PubMed ID: 9671654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anoctamin 2/TMEM16B: a calcium-activated chloride channel in olfactory transduction.
    Pifferi S; Cenedese V; Menini A
    Exp Physiol; 2012 Feb; 97(2):193-9. PubMed ID: 21890523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclic-nucleotide-gated cation current and Ca2+-activated Cl current elicited by odorant in vertebrate olfactory receptor neurons.
    Li RC; Ben-Chaim Y; Yau KW; Lin CC
    Proc Natl Acad Sci U S A; 2016 Oct; 113(40):11078-11087. PubMed ID: 27647918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Presence of Ca2+-dependent K+ channels in chemosensory cilia support a role in odor transduction.
    Delgado R; Saavedra MV; Schmachtenberg O; Sierralta J; Bacigalupo J
    J Neurophysiol; 2003 Sep; 90(3):2022-8. PubMed ID: 12801890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ca2+-activated K+ currents regulate odor adaptation by modulating spike encoding of olfactory receptor cells.
    Kawai F
    Biophys J; 2002 Apr; 82(4):2005-15. PubMed ID: 11916858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. T-type Ca2+ channels mediate propagation of odor-induced Ca2+ transients in rat olfactory receptor neurons.
    Gautam SH; Otsuguro KI; Ito S; Saito T; Habara Y
    Neuroscience; 2007 Jan; 144(2):702-13. PubMed ID: 17110049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Odor discrimination by G protein-coupled olfactory receptors.
    Touhara K
    Microsc Res Tech; 2002 Aug; 58(3):135-41. PubMed ID: 12203691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-gain, low-noise amplification in olfactory transduction.
    Kleene SJ
    Biophys J; 1997 Aug; 73(2):1110-7. PubMed ID: 9251827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Odor suppression of voltage-gated currents contributes to the odor-induced response in olfactory neurons.
    Sanhueza M; Bacigalupo J
    Am J Physiol; 1999 Dec; 277(6):C1086-99. PubMed ID: 10600760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amplification of odor-induced Ca(2+) transients by store-operated Ca(2+) release and its role in olfactory signal transduction.
    Zufall F; Leinders-Zufall T; Greer CA
    J Neurophysiol; 2000 Jan; 83(1):501-12. PubMed ID: 10634891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy Requirements of Odor Transduction in the Chemosensory Cilia of Olfactory Sensory Neurons Rely on Oxidative Phosphorylation and Glycolytic Processing of Extracellular Glucose.
    Villar PS; Delgado R; Vergara C; Reyes JG; Bacigalupo J
    J Neurosci; 2017 Jun; 37(23):5736-5743. PubMed ID: 28500222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Olfactory marker protein modulates the cAMP kinetics of the odour-induced response in cilia of mouse olfactory receptor neurons.
    Reisert J; Yau KW; Margolis FL
    J Physiol; 2007 Dec; 585(Pt 3):731-40. PubMed ID: 17932148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclic AMP cascade mediates the inhibitory odor response of isolated toad olfactory receptor neurons.
    Madrid R; Delgado R; Bacigalupo J
    J Neurophysiol; 2005 Sep; 94(3):1781-8. PubMed ID: 15817646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noninvasive measurement of chloride concentration in rat olfactory receptor cells with use of a fluorescent dye.
    Kaneko H; Nakamura T; Lindemann B
    Am J Physiol Cell Physiol; 2001 Jun; 280(6):C1387-93. PubMed ID: 11350733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Central role of the CNGA4 channel subunit in Ca2+-calmodulin-dependent odor adaptation.
    Munger SD; Lane AP; Zhong H; Leinders-Zufall T; Yau KW; Zufall F; Reed RR
    Science; 2001 Dec; 294(5549):2172-5. PubMed ID: 11739959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca2+-activated Cl- channels of the ClCa family express in the cilia of a subset of rat olfactory sensory neurons.
    Gonzalez-Silva C; Vera J; Bono MR; González-Billault C; Baxter B; Hansen A; Lopez R; Gibson EA; Restrepo D; Bacigalupo J
    PLoS One; 2013; 8(7):e69295. PubMed ID: 23874937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clustering of cyclic-nucleotide-gated channels in olfactory cilia.
    Flannery RJ; French DA; Kleene SJ
    Biophys J; 2006 Jul; 91(1):179-88. PubMed ID: 16603488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional architecture of olfactory ionotropic glutamate receptors.
    Abuin L; Bargeton B; Ulbrich MH; Isacoff EY; Kellenberger S; Benton R
    Neuron; 2011 Jan; 69(1):44-60. PubMed ID: 21220098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The proteome of rat olfactory sensory cilia.
    Mayer U; Küller A; Daiber PC; Neudorf I; Warnken U; Schnölzer M; Frings S; Möhrlen F
    Proteomics; 2009 Jan; 9(2):322-34. PubMed ID: 19086097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.