BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 18703843)

  • 21. The Structure of the Transcriptional Repressor KstR in Complex with CoA Thioester Cholesterol Metabolites Sheds Light on the Regulation of Cholesterol Catabolism in Mycobacterium tuberculosis.
    Ho NA; Dawes SS; Crowe AM; Casabon I; Gao C; Kendall SL; Baker EN; Eltis LD; Lott JS
    J Biol Chem; 2016 Apr; 291(14):7256-66. PubMed ID: 26858250
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystal structures of manganese-dependent transcriptional repressor MntR (Rv2788) from Mycobacterium tuberculosis in apo and manganese bound forms.
    Cong X; Yuan Z; Wang Z; Wei B; Xu S; Wang J
    Biochem Biophys Res Commun; 2018 Jun; 501(2):423-427. PubMed ID: 29730293
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crystallization and preliminary X-ray diffraction analysis of the arginine repressor of the hyperthermophile Thermotoga neapolitana.
    Massant J; Peeters E; Charlier D; Maes D
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2006 Jan; 62(Pt 1):26-8. PubMed ID: 16511254
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crystal structures, metal activation, and DNA-binding properties of two-domain IdeR from Mycobacterium tuberculosis.
    Wisedchaisri G; Chou CJ; Wu M; Roach C; Rice AE; Holmes RK; Beeson C; Hol WG
    Biochemistry; 2007 Jan; 46(2):436-47. PubMed ID: 17209554
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crystal structure of ArgP from Mycobacterium tuberculosis confirms two distinct conformations of full-length LysR transcriptional regulators and reveals its function in DNA binding and transcriptional regulation.
    Zhou X; Lou Z; Fu S; Yang A; Shen H; Li Z; Feng Y; Bartlam M; Wang H; Rao Z
    J Mol Biol; 2010 Mar; 396(4):1012-24. PubMed ID: 20036253
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Expression, purification, crystallization and preliminary X-ray analysis of two arginine-biosynthetic enzymes from Mycobacterium tuberculosis.
    Moradian F; Garen C; Cherney L; Cherney M; James MN
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2006 Oct; 62(Pt 10):986-8. PubMed ID: 17012791
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure of pyrR (Rv1379) from Mycobacterium tuberculosis: a persistence gene and protein drug target.
    Kantardjieff KA; Vasquez C; Castro P; Warfel NM; Rho BS; Lekin T; Kim CY; Segelke BW; Terwilliger TC; Rupp B
    Acta Crystallogr D Biol Crystallogr; 2005 Apr; 61(Pt 4):355-64. PubMed ID: 15805589
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural and functional characterization of a ketosteroid transcriptional regulator of Mycobacterium tuberculosis.
    Crowe AM; Stogios PJ; Casabon I; Evdokimova E; Savchenko A; Eltis LD
    J Biol Chem; 2015 Jan; 290(2):872-82. PubMed ID: 25406313
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crystallization and preliminary X-ray studies of the C-terminal domain of Mycobacterium tuberculosis LexA.
    Chandran AV; Prabu JR; Manjunath GP; Patil KN; Muniyappa K; Vijayan M
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2010 Sep; 66(Pt 9):1093-5. PubMed ID: 20823535
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A single P115Q mutation modulates specificity in the Corynebacterium pseudotuberculosis arginine repressor.
    Mariutti RB; Hernández-González JE; Nascimento AFZ; de Morais MAB; Murakami MT; Carareto CMA; Arni RK
    Biochim Biophys Acta Gen Subj; 2020 Jul; 1864(7):129597. PubMed ID: 32156582
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A comparative three-dimensional model of the carboxy-terminal domain of the lambda repressor and its use to build intact repressor tetramer models bound to adjacent operator sites.
    Chattopadhyaya R; Ghosh K
    J Struct Biol; 2003 Feb; 141(2):103-14. PubMed ID: 12615536
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crystal structure of the lambda repressor C-terminal domain octamer.
    Bell CE; Lewis M
    J Mol Biol; 2001 Dec; 314(5):1127-36. PubMed ID: 11743728
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mutational analysis of the arginine repressor of Escherichia coli.
    Tian G; Maas WK
    Mol Microbiol; 1994 Aug; 13(4):599-608. PubMed ID: 7997172
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Study of interactions between Mycobacterium tuberculosis proteins: SigK and anti-SigK.
    Malkhed V; Gudlur B; Kondagari B; Dulapalli R; Vuruputuri U
    J Mol Model; 2011 May; 17(5):1109-19. PubMed ID: 20676709
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computational docking of L-arginine and its structural analogues to C-terminal domain of Escherichia coli arginine repressor protein (ArgRc).
    Kueh R; Rahman NA; Merican AF
    J Mol Model; 2003 Apr; 9(2):88-98. PubMed ID: 12707802
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mutational analysis of the thermostable arginine repressor from Bacillus stearothermophilus: dissecting residues involved in DNA binding properties.
    Karaivanova IM; Weigel P; Takahashi M; Fort C; Versavaud A; Van Duyne G; Charlier D; Hallet JN; Glansdorff N; Sakanyan V
    J Mol Biol; 1999 Aug; 291(4):843-55. PubMed ID: 10452892
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 1.55 Å resolution X-ray crystal structure of Rv3902c from Mycobacterium tuberculosis.
    Reddy BG; Moates DB; Kim HB; Green TJ; Kim CY; Terwilliger TC; DeLucas LJ
    Acta Crystallogr F Struct Biol Commun; 2014 Apr; 70(Pt 4):414-7. PubMed ID: 24699730
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The crystal structures of ornithine carbamoyltransferase from Mycobacterium tuberculosis and its ternary complex with carbamoyl phosphate and L-norvaline reveal the enzyme's catalytic mechanism.
    Sankaranarayanan R; Cherney MM; Cherney LT; Garen CR; Moradian F; James MN
    J Mol Biol; 2008 Jan; 375(4):1052-63. PubMed ID: 18062991
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transcription regulation in thermophilic bacteria: high resolution contact probing of Bacillus stearothermophilus and Thermotoga neapolitana arginine repressor-operator interactions.
    Song H; Wang H; Gigot D; Dimova D; Sakanyan V; Glansdorff N; Charlier D
    J Mol Biol; 2002 Jan; 315(3):255-74. PubMed ID: 11786010
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation of arginine biosynthesis in the psychropiezophilic bacterium Moritella profunda: in vivo repressibility and in vitro repressor-operator contact probing.
    Xu Y; Sun Y; Huysveld N; Gigot D; Glansdorff N; Charlier D
    J Mol Biol; 2003 Feb; 326(2):353-69. PubMed ID: 12559906
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.