BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 18704158)

  • 1. Selective constraints in experimentally defined primate regulatory regions.
    Gaffney DJ; Blekhman R; Majewski J
    PLoS Genet; 2008 Aug; 4(8):e1000157. PubMed ID: 18704158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De novo prediction of cis-regulatory elements and modules through integrative analysis of a large number of ChIP datasets.
    Niu M; Tabari ES; Su Z
    BMC Genomics; 2014 Dec; 15():1047. PubMed ID: 25442502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mammalian evolution of human cis-regulatory elements and transcription factor binding sites.
    Andrews G; Fan K; Pratt HE; Phalke N; ; Karlsson EK; Lindblad-Toh K; Gazal S; Moore JE; Weng Z
    Science; 2023 Apr; 380(6643):eabn7930. PubMed ID: 37104580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide prediction of transcriptional regulatory elements of human promoters using gene expression and promoter analysis data.
    Kim SY; Kim Y
    BMC Bioinformatics; 2006 Jul; 7():330. PubMed ID: 16817975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PCRMS: a database of predicted cis-regulatory modules and constituent transcription factor binding sites in genomes.
    Ni P; Su Z
    Database (Oxford); 2022 Apr; 2022():. PubMed ID: 35452518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extensive evolutionary changes in regulatory element activity during human origins are associated with altered gene expression and positive selection.
    Shibata Y; Sheffield NC; Fedrigo O; Babbitt CC; Wortham M; Tewari AK; London D; Song L; Lee BK; Iyer VR; Parker SC; Margulies EH; Wray GA; Furey TS; Crawford GE
    PLoS Genet; 2012 Jun; 8(6):e1002789. PubMed ID: 22761590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Establishing and validating regulatory regions for variant annotation and expression analysis.
    Kaplun A; Krull M; Lakshman K; Matys V; Lewicki B; Hogan JD
    BMC Genomics; 2016 Jun; 17 Suppl 2(Suppl 2):393. PubMed ID: 27357948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating genomic data to predict transcription factor binding.
    Holloway DT; Kon M; DeLisi C
    Genome Inform; 2005; 16(1):83-94. PubMed ID: 16362910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CisView: a browser and database of cis-regulatory modules predicted in the mouse genome.
    Sharov AA; Dudekula DB; Ko MS
    DNA Res; 2006 Jun; 13(3):123-34. PubMed ID: 16980320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Most of the tight positional conservation of transcription factor binding sites near the transcription start site reflects their co-localization within regulatory modules.
    Acevedo-Luna N; Mariño-Ramírez L; Halbert A; Hansen U; Landsman D; Spouge JL
    BMC Bioinformatics; 2016 Nov; 17(1):479. PubMed ID: 27871221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MAPPER: a search engine for the computational identification of putative transcription factor binding sites in multiple genomes.
    Marinescu VD; Kohane IS; Riva A
    BMC Bioinformatics; 2005 Mar; 6():79. PubMed ID: 15799782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A probabilistic approach to learn chromatin architecture and accurate inference of the NF-κB/RelA regulatory network using ChIP-Seq.
    Yang J; Mitra A; Dojer N; Fu S; Rowicka M; Brasier AR
    Nucleic Acids Res; 2013 Aug; 41(15):7240-59. PubMed ID: 23771139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. UniBind: maps of high-confidence direct TF-DNA interactions across nine species.
    Puig RR; Boddie P; Khan A; Castro-Mondragon JA; Mathelier A
    BMC Genomics; 2021 Jun; 22(1):482. PubMed ID: 34174819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequent gain and loss of functional transcription factor binding sites.
    Doniger SW; Fay JC
    PLoS Comput Biol; 2007 May; 3(5):e99. PubMed ID: 17530920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hidden Markov model for analyzing ChIP-chip experiments on genome tiling arrays and its application to p53 binding sequences.
    Li W; Meyer CA; Liu XS
    Bioinformatics; 2005 Jun; 21 Suppl 1():i274-82. PubMed ID: 15961467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A map of cis-regulatory modules and constituent transcription factor binding sites in 80% of the mouse genome.
    Ni P; Wilson D; Su Z
    BMC Genomics; 2022 Oct; 23(1):714. PubMed ID: 36261804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionary rates and patterns for human transcription factor binding sites derived from repetitive DNA.
    Polavarapu N; Mariño-Ramírez L; Landsman D; McDonald JF; Jordan IK
    BMC Genomics; 2008 May; 9():226. PubMed ID: 18485226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decreased Transcription Factor Binding Levels Nearby Primate Pseudogenes Suggest Regulatory Degeneration.
    Douglas GM; Wilson MD; Moses AM
    Mol Biol Evol; 2016 Jun; 33(6):1478-85. PubMed ID: 26882985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcription factor binding sites are frequently under accelerated evolution in primates.
    Zhang X; Fang B; Huang YF
    Nat Commun; 2023 Feb; 14(1):783. PubMed ID: 36774380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alignment and prediction of cis-regulatory modules based on a probabilistic model of evolution.
    He X; Ling X; Sinha S
    PLoS Comput Biol; 2009 Mar; 5(3):e1000299. PubMed ID: 19293946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.