These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 18704175)

  • 21. Flocculation, adhesion and biofilm formation in yeasts.
    Verstrepen KJ; Klis FM
    Mol Microbiol; 2006 Apr; 60(1):5-15. PubMed ID: 16556216
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aggregate Filamentous Growth Responses in Yeast.
    Chow J; Dionne HM; Prabhakar A; Mehrotra A; Somboonthum J; Gonzalez B; Edgerton M; Cullen PJ
    mSphere; 2019 Mar; 4(2):. PubMed ID: 30842272
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genetic analysis reveals that FLO11 upregulation and cell polarization independently regulate invasive growth in Saccharomyces cerevisiae.
    Palecek SP; Parikh AS; Kron SJ
    Genetics; 2000 Nov; 156(3):1005-23. PubMed ID: 11063681
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of switch phenotypes in Candida albicans biofilms.
    Jin Y; Samaranayake YH; Yip HK; Samaranayake LP
    Mycopathologia; 2005 Oct; 160(3):191-200. PubMed ID: 16205967
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Induction, separation and identification of haploid strains from industrial brewer's yeast.
    Xu W; Wang J; Li Q
    Wei Sheng Wu Xue Bao; 2015 Jan; 55(1):22-32. PubMed ID: 25958679
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two novel targets of the MAP kinase Kss1 are negative regulators of invasive growth in the yeast Saccharomyces cerevisiae.
    Cook JG; Bardwell L; Kron SJ; Thorner J
    Genes Dev; 1996 Nov; 10(22):2831-48. PubMed ID: 8918885
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Acetyltransferase SAS2 and sirtuin SIR2, respectively, control flocculation and biofilm formation in wine yeast.
    Rodriguez ME; Orozco H; Cantoral JM; Matallana E; Aranda A
    FEMS Yeast Res; 2014 Sep; 14(6):845-57. PubMed ID: 24920206
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Variation in pH gradients and FLO11 expression in mat biofilms from environmental isolates of the yeast Saccharomyces cerevisiae.
    Forehand AL; Myagmarsuren D; Chen Z; Murphy HA
    Microbiologyopen; 2022 Apr; 11(2):e1277. PubMed ID: 35478280
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biofilm formation by potentially probiotic Saccharomyces cerevisiae strains.
    Speranza B; Corbo MR; Campaniello D; Altieri C; Sinigaglia M; Bevilacqua A
    Food Microbiol; 2020 May; 87():103393. PubMed ID: 31948634
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phenotype switching affects biofilm formation by Candida parapsilosis.
    Laffey SF; Butler G
    Microbiology (Reading); 2005 Apr; 151(Pt 4):1073-1081. PubMed ID: 15817776
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flo11p-independent control of "mat" formation by hsp70 molecular chaperones and nucleotide exchange factors in yeast.
    Martineau CN; Beckerich JM; Kabani M
    Genetics; 2007 Nov; 177(3):1679-89. PubMed ID: 17947402
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of quorum-sensing molecule 2-phenylethanol and ARO genes on Saccharomyces cerevisiae biofilm.
    Zhang D; Wang F; Yu Y; Ding S; Chen T; Sun W; Liang C; Yu B; Ying H; Liu D; Chen Y
    Appl Microbiol Biotechnol; 2021 May; 105(9):3635-3648. PubMed ID: 33852023
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of alcohol-induced filamentous growth in Saccharomyces cerevisiae.
    Lorenz MC; Cutler NS; Heitman J
    Mol Biol Cell; 2000 Jan; 11(1):183-99. PubMed ID: 10637301
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coregulation of starch degradation and dimorphism in the yeast Saccharomyces cerevisiae.
    Vivier MA; Lambrechts MG; Pretorius IS
    Crit Rev Biochem Mol Biol; 1997; 32(5):405-35. PubMed ID: 9383611
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Diverse roles of Tup1p and Cyc8p transcription regulators in the development of distinct types of yeast populations.
    Váchová L; Palková Z
    Curr Genet; 2019 Feb; 65(1):147-151. PubMed ID: 30191307
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Glucose depletion causes haploid invasive growth in yeast.
    Cullen PJ; Sprague GF
    Proc Natl Acad Sci U S A; 2000 Dec; 97(25):13619-24. PubMed ID: 11095711
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rck1 up-regulates pseudohyphal growth by activating the Ras2 and MAP kinase pathways independently in Saccharomyces cerevisiae.
    Chang M; Kang CM; Park YS; Yun CW
    Biochem Biophys Res Commun; 2014 Feb; 444(4):656-61. PubMed ID: 24491552
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae.
    Pan X; Heitman J
    Mol Cell Biol; 1999 Jul; 19(7):4874-87. PubMed ID: 10373537
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Messengers for morphogenesis: inositol polyphosphate signaling and yeast pseudohyphal growth.
    Mutlu N; Kumar A
    Curr Genet; 2019 Feb; 65(1):119-125. PubMed ID: 30101372
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Awa1p on the cell surface of sake yeast inhibits biofilm formation and the co-aggregation between sake yeasts and Lactobacillus plantarum ML11-11.
    Hirayama S; Shimizu M; Tsuchiya N; Furukawa S; Watanabe D; Shimoi H; Takagi H; Ogihara H; Morinaga Y
    J Biosci Bioeng; 2015 May; 119(5):532-7. PubMed ID: 25454063
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.