BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

561 related articles for article (PubMed ID: 18704233)

  • 1. Fluorescent resonance energy transfer (FRET) based detection of a multiplex ligation-dependent probe amplification assay (MLPA) product.
    Ozalp VC; Nygren AO; O'Sullivan CK
    Mol Biosyst; 2008 Sep; 4(9):950-4. PubMed ID: 18704233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developing mixed films of immobilized oligonucleotides and quantum dots for the multiplexed detection of nucleic acid hybridization using a combination of fluorescence resonance energy transfer and direct excitation of fluorescence.
    Algar WR; Krull UJ
    Langmuir; 2010 Apr; 26(8):6041-7. PubMed ID: 20000340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting ligated fragments on oligonucleotide microarrays: optimizing chip design, array multiplex ligation-dependent probe amplification modification, and hybridization parameters.
    Berry IR; Delaney CA; Taylor GR
    Methods Mol Biol; 2007; 381():247-65. PubMed ID: 17984523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence energy transfer between fluorescein label and DNA intercalators to detect nucleic acids hybridization in homogeneous media.
    Talavera EM; Bermejo R; Crovetto L; Orte A; Alvarez-Pez JM
    Appl Spectrosc; 2003 Feb; 57(2):208-15. PubMed ID: 14610959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MLPA and MAPH: new techniques for detection of gene deletions.
    Sellner LN; Taylor GR
    Hum Mutat; 2004 May; 23(5):413-9. PubMed ID: 15108271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacial transduction of nucleic acid hybridization using immobilized quantum dots as donors in fluorescence resonance energy transfer.
    Algar WR; Krull UJ
    Langmuir; 2009 Jan; 25(1):633-8. PubMed ID: 19115878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved testing for CMT1A and HNPP using multiplex ligation-dependent probe amplification (MLPA) with rapid DNA preparations: comparison with the interphase FISH method.
    Slater H; Bruno D; Ren H; La P; Burgess T; Hills L; Nouri S; Schouten J; Choo KH
    Hum Mutat; 2004 Aug; 24(2):164-71. PubMed ID: 15241798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiplex Ligation-dependent Probe Amplification (MLPA®) for the detection of copy number variation in genomic sequences.
    Eijk-Van Os PG; Schouten JP
    Methods Mol Biol; 2011; 688():97-126. PubMed ID: 20938835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward a multiplexed solid-phase nucleic acid hybridization assay using quantum dots as donors in fluorescence resonance energy transfer.
    Algar WR; Krull UJ
    Anal Chem; 2009 May; 81(10):4113-20. PubMed ID: 19358559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-color multiplex ligation-dependent probe amplification: detecting genomic rearrangements in hereditary multiple exostoses.
    White SJ; Vink GR; Kriek M; Wuyts W; Schouten J; Bakker B; Breuning MH; den Dunnen JT
    Hum Mutat; 2004 Jul; 24(1):86-92. PubMed ID: 15221792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of cryptic subtelomeric chromosome abnormalities and identification of anonymous chromatin using a quantitative multiplex ligation-dependent probe amplification (MLPA) assay.
    Northrop EL; Ren H; Bruno DL; McGhie JD; Coffa J; Schouten J; Choo KH; Slater HR
    Hum Mutat; 2005 Nov; 26(5):477-86. PubMed ID: 16170807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Designing a simple multiplex ligation-dependent probe amplification (MLPA) assay for rapid detection of copy number variants in the genome.
    Shen Y; Wu BL
    J Genet Genomics; 2009 Apr; 36(4):257-65. PubMed ID: 19376486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New applications and developments in the use of multiplex ligation-dependent probe amplification.
    Kozlowski P; Jasinska AJ; Kwiatkowski DJ
    Electrophoresis; 2008 Dec; 29(23):4627-36. PubMed ID: 19053154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tandem dye acceptor used to enhance upconversion fluorescence resonance energy transfer in homogeneous assays.
    Rantanen T; Päkkilä H; Jämsen L; Kuningas K; Ukonaho T; Lövgren T; Soukka T
    Anal Chem; 2007 Aug; 79(16):6312-8. PubMed ID: 17628044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-resolved detection probe for homogeneous nucleic acid analyses in one-step format.
    Laitala V; Ylikoski A; Raussi HM; Ollikka P; Hemmilä I
    Anal Biochem; 2007 Feb; 361(1):126-31. PubMed ID: 17188225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time target-specific detection of loop-mediated isothermal amplification for white spot syndrome virus using fluorescence energy transfer-based probes.
    Chou PH; Lin YC; Teng PH; Chen CL; Lee PY
    J Virol Methods; 2011 Apr; 173(1):67-74. PubMed ID: 21256868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel FRET-based optical fiber biosensor for rapid detection of Salmonella typhimurium.
    Ko S; Grant SA
    Biosens Bioelectron; 2006 Jan; 21(7):1283-90. PubMed ID: 16040238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of DNA hybridization using induced fluorescence resonance energy transfer.
    Howell WM
    Methods Mol Biol; 2006; 335():33-41. PubMed ID: 16785618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isothermal target and signaling probe amplification method, based on a combination of an isothermal chain amplification technique and a fluorescence resonance energy transfer cycling probe technology.
    Jung C; Chung JW; Kim UO; Kim MH; Park HG
    Anal Chem; 2010 Jul; 82(14):5937-43. PubMed ID: 20575518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of known mutations for medical diagnostics by FRET spectroscopy.
    Aneja A; Mathur N; Bhatnagar PK; Mathur PC
    J Biomater Sci Polym Ed; 2009; 20(13):1823-30. PubMed ID: 19793441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.