BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 18704236)

  • 1. The biomechanical properties of the feline femur.
    Gibson TW; Moens NM; Runciman RJ; Holmberg DL; Monteith GM
    Vet Comp Orthop Traumatol; 2008; 21(4):312-7. PubMed ID: 18704236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of a short glass fibre-reinforced tube as a model for cat femur for biomechanical testing of orthopaedic implants.
    Gibson TW; Moens NM; Runciman RJ; Holmberg DL
    Vet Comp Orthop Traumatol; 2008; 21(3):195-201. PubMed ID: 18536844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An in vitro biomechanical comparison of interlocking nail constructs and double plating for fixation of diaphyseal femur fractures in immature horses.
    Radcliffe RM; Lopez MJ; Turner TA; Watkins JP; Radcliffe CH; Markel MD
    Vet Surg; 2001; 30(2):179-90. PubMed ID: 11230773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cortical screw pullout strength and effective shear stress in synthetic third generation composite femurs.
    Zdero R; Rose S; Schemitsch EH; Papini M
    J Biomech Eng; 2007 Apr; 129(2):289-93. PubMed ID: 17408335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical comparison of a 3.5-mm conical coupling plating system and a 3.5-mm locking compression plate applied as plate-rod constructs to an experimentally created fracture gap in femurs of canine cadavers.
    Tremolada G; Lewis DD; Paragnani KL; Conrad BP; Kim SE; Pozzi A
    Am J Vet Res; 2017 Jun; 78(6):712-717. PubMed ID: 28541152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Screw-Hole Defect Size on the Biomechanical Properties of Feline Femora in an Ex Vivo Model.
    Hoon QJ; Wang T; Hall E; Walsh WR; Johnson KA
    Vet Comp Orthop Traumatol; 2022 Jan; 35(1):33-46. PubMed ID: 34488233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural properties of interlocking nails, canine femora, and femur-interlocking nail constructs.
    Dueland RT; Berglund L; Vanderby R; Chao EY
    Vet Surg; 1996; 25(5):386-96. PubMed ID: 8879110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An in vitro biomechanical study of bone plate and interlocking nail in a canine diaphyseal femoral fracture model.
    Bernarde A; Diop A; Maurel N; Viguier E
    Vet Surg; 2001; 30(5):397-408. PubMed ID: 11555814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical comparison of two side plate fixation techniques in an unstable intertrochanteric osteotomy model: Sliding Hip Screw and Percutaneous Compression Plate.
    Krischak GD; Augat P; Beck A; Arand M; Baier B; Blakytny R; Gebhard F; Claes L
    Clin Biomech (Bristol, Avon); 2007 Dec; 22(10):1112-8. PubMed ID: 17900766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of bending and twisting on the stiffness and strength of the 3.5 SOP implant.
    Ness MG
    Vet Comp Orthop Traumatol; 2009; 22(2):132-6. PubMed ID: 19290394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of screw position on single cycle to failure in bending and torsion of a locking plate-rod construct in a synthetic feline femoral gap model.
    Niederhäuser SK; Tepic S; Weber UT
    Am J Vet Res; 2015 May; 76(5):402-10. PubMed ID: 25909372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A biomechanical comparison of equine third metacarpal condylar bone fragment compression and screw pushout strength between headless tapered variable pitch and AO cortical bone screws.
    Galuppo LD; Stover SM; Jensen DG
    Vet Surg; 2002; 31(3):201-10. PubMed ID: 11994847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Biomechanical research of less invasive stabilization system and dynamic condylar screw in fixing subtrochanteric fractures of femur].
    Yang Y; Ma X; Ma J; Zhu S; Ma B; Ji S; Ma T; Chen Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2012 Oct; 26(10):1213-7. PubMed ID: 23167106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative biomechanical analysis of fixation devices for unstable femoral neck fractures: the Intertan versus cannulated screws or a dynamic hip screw.
    Rupprecht M; Grossterlinden L; Ruecker AH; de Oliveira AN; Sellenschloh K; Nüchtern J; Püschel K; Morlock M; Rueger JM; Lehmann W
    J Trauma; 2011 Sep; 71(3):625-34. PubMed ID: 21768904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical testing of 3.5 mm locking and non-locking bone plates.
    DeTora M; Kraus K
    Vet Comp Orthop Traumatol; 2008; 21(4):318-22. PubMed ID: 18704237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro biomechanical comparison of solid and tubular interlocking nails in neonatal bovine femurs.
    Trostle SS; Wilson DG; Dueland RT; Markel MD
    Vet Surg; 1995; 24(3):235-43. PubMed ID: 7653038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Medoff sliding plate and a standard sliding hip screw for unstable intertrochanteric fractures: a mechanical comparison in cadaver femurs.
    Olsson O; Kummer FJ; Ceder L; Koval KJ; Larsson S; Zuckerman JD
    Acta Orthop Scand; 1998 Jun; 69(3):266-72. PubMed ID: 9703400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of implant overlap on the mechanical properties of the femur.
    Harris T; Ruth JT; Szivek J; Haywood B
    J Trauma; 2003 May; 54(5):930-5. PubMed ID: 12777906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hip screw augmentation with an in situ-setting calcium phosphate cement: an in vitro biomechanical analysis.
    Moore DC; Frankenburg EP; Goulet JA; Goldstein SA
    J Orthop Trauma; 1997 Nov; 11(8):577-83. PubMed ID: 9415864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A quantitative analysis of tension band plating of the femur diaphysis.
    Hommel GJ; Lobrano C; Ogden AL; Mukherjee DP; Anissian L; Marymont JV
    Arch Orthop Trauma Surg; 2011 Oct; 131(10):1325-30. PubMed ID: 21387135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.