These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 18704655)

  • 1. Fabrication of porous poly(L-lactide) (PLLA) scaffolds for tissue engineering using liquid-liquid phase separation and freeze extraction.
    Budyanto L; Goh YQ; Ooi CP
    J Mater Sci Mater Med; 2009 Jan; 20(1):105-11. PubMed ID: 18704655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication and characterization of porous poly(L-lactide) scaffolds using solid-liquid phase separation.
    Goh YQ; Ooi CP
    J Mater Sci Mater Med; 2008 Jun; 19(6):2445-52. PubMed ID: 18219558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Porous poly(ε-caprolactone) scaffolds for load-bearing tissue regeneration: solventless fabrication and characterization.
    Allaf RM; Rivero IV; Abidi N; Ivanov IN
    J Biomed Mater Res B Appl Biomater; 2013 Aug; 101(6):1050-60. PubMed ID: 23559444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of some factors on fabrication of poly(L-lactic acid) microporous foams by thermally induced phase separation using N,N-dimethylacetamide as solvent.
    Li S; Chen X; Li M
    Prep Biochem Biotechnol; 2011; 41(1):53-72. PubMed ID: 21229464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A polylactide/fibrin gel composite scaffold for cartilage tissue engineering: fabrication and an in vitro evaluation.
    Zhao H; Ma L; Gong Y; Gao C; Shen J
    J Mater Sci Mater Med; 2009 Jan; 20(1):135-43. PubMed ID: 18704656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of PLLA/β-TCP nanocomposite scaffolds with hierarchical porosity for bone tissue engineering.
    Lou T; Wang X; Song G; Gu Z; Yang Z
    Int J Biol Macromol; 2014 Aug; 69():464-70. PubMed ID: 24933519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D scaffold of PLLA/pearl and PLLA/nacre powder for bone regeneration.
    Liu Y; Huang Q; Feng Q
    Biomed Mater; 2013 Dec; 8(6):065001. PubMed ID: 24225162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of pore formation in hydrogel scaffolds textured by freeze-drying.
    Grenier J; Duval H; Barou F; Lv P; David B; Letourneur D
    Acta Biomater; 2019 Aug; 94():195-203. PubMed ID: 31154055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of bimodal open-porous poly (butylene succinate)/cellulose nanocrystals composite scaffolds for tissue engineering application.
    Ju J; Gu Z; Liu X; Zhang S; Peng X; Kuang T
    Int J Biol Macromol; 2020 Mar; 147():1164-1173. PubMed ID: 31751685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and mechanical characterization of 3D electrospun scaffolds for tissue engineering.
    Wright LD; Young RT; Andric T; Freeman JW
    Biomed Mater; 2010 Oct; 5(5):055006. PubMed ID: 20844321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A viscoelastic chitosan-modified three-dimensional porous poly(L-lactide-co-ε-caprolactone) scaffold for cartilage tissue engineering.
    Li C; Wang L; Yang Z; Kim G; Chen H; Ge Z
    J Biomater Sci Polym Ed; 2012; 23(1-4):405-24. PubMed ID: 21310105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled preparation and properties of porous poly(L-lactide) obtained from a co-continuous blend of two biodegradable polymers.
    Sarazin P; Roy X; Favis BD
    Biomaterials; 2004 Dec; 25(28):5965-78. PubMed ID: 15183611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and characterization of waterborne biodegradable polyurethanes 3-dimensional porous scaffolds for vascular tissue engineering.
    Jiang X; Yu F; Wang Z; Li J; Tan H; Ding M; Fu Q
    J Biomater Sci Polym Ed; 2010; 21(12):1637-52. PubMed ID: 20537246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-pressure foaming: a novel method for the fabrication of porous scaffolds for tissue engineering.
    Chung EJ; Sugimoto M; Koh JL; Ameer GA
    Tissue Eng Part C Methods; 2012 Feb; 18(2):113-21. PubMed ID: 21933018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fused deposition modeling of novel scaffold architectures for tissue engineering applications.
    Zein I; Hutmacher DW; Tan KC; Teoh SH
    Biomaterials; 2002 Feb; 23(4):1169-85. PubMed ID: 11791921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porous and strong bioactive glass (13-93) scaffolds prepared by unidirectional freezing of camphene-based suspensions.
    Liu X; Rahaman MN; Fu Q; Tomsia AP
    Acta Biomater; 2012 Jan; 8(1):415-23. PubMed ID: 21855661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of interconnected highly porous polymeric structures by a replication and freeze-drying process.
    Hou Q; Grijpma DW; Feijen J
    J Biomed Mater Res B Appl Biomater; 2003 Nov; 67(2):732-40. PubMed ID: 14598400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymer scaffolds with no skin-effect for tissue engineering applications fabricated by thermally induced phase separation.
    Kasoju N; Kubies D; Sedlačík T; Janoušková O; Koubková J; Kumorek MM; Rypáček F
    Biomed Mater; 2016 Jan; 11(1):015002. PubMed ID: 26752658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microstructure and properties of nano-fibrous PCL-b-PLLA scaffolds for cartilage tissue engineering.
    He L; Liu B; Xipeng G; Xie G; Liao S; Quan D; Cai D; Lu J; Ramakrishna S
    Eur Cell Mater; 2009 Oct; 18():63-74. PubMed ID: 19859871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of cryomilling times on the resultant properties of porous biodegradable poly(e-caprolactone)/poly(glycolic acid) scaffolds for articular cartilage tissue engineering.
    Jonnalagadda JB; Rivero IV
    J Mech Behav Biomed Mater; 2014 Dec; 40():33-41. PubMed ID: 25194523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.