These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 18704723)

  • 1. Phylogenomic study of spiral-horned antelope by cross-species chromosome painting.
    Rubes J; Kubickova S; Pagacova E; Cernohorska H; Di Berardino D; Antoninova M; Vahala J; Robinson TJ
    Chromosome Res; 2008; 16(7):935-47. PubMed ID: 18704723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complex patterns of gene flow and convergence in the evolutionary history of the spiral-horned antelopes (Tragelaphini).
    Rakotoarivelo AR; Rambuda T; Taron UH; Stalder G; O'Donoghue P; Robovský J; Hartmann S; Hofreiter M; Moodley Y
    Mol Phylogenet Evol; 2024 Sep; 198():108131. PubMed ID: 38909875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical organization of the 1.709 satellite IV DNA family in Bovini and Tragelaphini tribes of the Bovidae: sequence and chromosomal evolution.
    Adega F; Chaves R; Guedes-Pinto H; Heslop-Harrison JS
    Cytogenet Genome Res; 2006; 114(2):140-6. PubMed ID: 16825766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-locus phylogeny of the tribe Tragelaphini (Mammalia, Bovidae) and species delimitation in bushbuck: Evidence for chromosomal speciation mediated by interspecific hybridization.
    Hassanin A; Houck ML; Tshikung D; Kadjo B; Davis H; Ropiquet A
    Mol Phylogenet Evol; 2018 Dec; 129():96-105. PubMed ID: 30121341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Basic haematological values in antelopes--II. The Hippotraginae and the Tragelaphinae.
    Pospísil J; Kase F; Vahala J; Mouchová I
    Comp Biochem Physiol A Comp Physiol; 1984; 78(4):799-807. PubMed ID: 6149054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. X chromosome evolution in the suni and eland antelope: detection of homologous regions by fluorescence in situ hybridization and G-banding.
    Robinson TJ; Harrison WR; Ponce de León A; Elder FF
    Cytogenet Cell Genet; 1997; 77(3-4):218-22. PubMed ID: 9284920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of species-specific differences in chromosome morphology on chromatin compaction and the frequency and distribution of RAD51 and MLH1 foci in two bovid species: cattle (Bos taurus) and the common eland (Taurotragus oryx).
    Sebestova H; Vozdova M; Kubickova S; Cernohorska H; Kotrba R; Rubes J
    Chromosoma; 2016 Mar; 125(1):137-49. PubMed ID: 26194101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular cytogenetics of tragelaphine and alcelaphine interspecies hybrids: hybridization, introgression and speciation in some African antelope.
    Robinson TJ; Cernohorska H; Schulze E; Duran-Puig A
    Biol Lett; 2015 Nov; 11(11):. PubMed ID: 26582842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromosome painting in Tragulidae facilitates the reconstruction of Ruminantia ancestral karyotype.
    Kulemzina AI; Yang F; Trifonov VA; Ryder OA; Ferguson-Smith MA; Graphodatsky AS
    Chromosome Res; 2011 May; 19(4):531-9. PubMed ID: 21445689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Meiotic behaviour of evolutionary sex-autosome translocations in Bovidae.
    Vozdova M; Ruiz-Herrera A; Fernandez J; Cernohorska H; Frohlich J; Sebestova H; Kubickova S; Rubes J
    Chromosome Res; 2016 Sep; 24(3):325-38. PubMed ID: 27136937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromosome evolution in the subtribe Bovina (Mammalia, Bovidae): the karyotype of the Cambodian banteng (Bos javanicus birmanicus) suggests that Robertsonian translocations are related to interspecific hybridization.
    Ropiquet A; Gerbault-Seureau M; Deuve JL; Gilbert C; Pagacova E; Chai N; Rubes J; Hassanin A
    Chromosome Res; 2008; 16(8):1107-18. PubMed ID: 18937038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular cytogenetic insights to the phylogenetic affinities of the giraffe (Giraffa camelopardalis) and pronghorn (Antilocapra americana).
    Cernohorska H; Kubickova S; Kopecna O; Kulemzina AI; Perelman PL; Elder FF; Robinson TJ; Graphodatsky AS; Rubes J
    Chromosome Res; 2013 Aug; 21(5):447-60. PubMed ID: 23896647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Centric fusion differences among Oryx dammah, O. gazella, and O. leucoryx (Artiodactyla, Bovidae).
    Kumamoto AT; Charter SJ; Kingswood SC; Ryder OA; Gallagher DS
    Cytogenet Cell Genet; 1999; 86(1):74-80. PubMed ID: 10516440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phylogenomic study of the subfamily Caprinae by cross-species chromosome painting with Chinese muntjac paints.
    Huang L; Nie W; Wang J; Su W; Yang F
    Chromosome Res; 2005; 13(4):389-99. PubMed ID: 15973503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromosome homologies between tsessebe (Damaliscus lunatus) and Chinese muntjac (Muntiacus reevesi) facilitate tracing the evolutionary history of Damaliscus (Bovidae, Antilopinae, Alcelaphini).
    Huang L; Jing M; Nie W; Robinson TJ; Yang F
    Cytogenet Genome Res; 2011; 132(4):264-70. PubMed ID: 21178333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanger, Eudorcas, Gazella, and Antilope form a well-supported chromosomal clade within Antilopini (Bovidae, Cetartiodactyla).
    Cernohorska H; Kubickova S; Kopecna O; Vozdova M; Matthee CA; Robinson TJ; Rubes J
    Chromosoma; 2015 Jun; 124(2):235-47. PubMed ID: 25416455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The genome phylogeny of domestic cat, red panda and five mustelid species revealed by comparative chromosome painting and G-banding.
    Nie W; Wang J; O'Brien PC; Fu B; Ying T; Ferguson-Smith MA; Yang F
    Chromosome Res; 2002; 10(3):209-22. PubMed ID: 12067210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A paradox revealed: karyotype evolution in the four-horned antelope occurs by tandem fusion (Mammalia, Bovidae, Tetracerus quadricornis).
    Ropiquet A; Hassanin A; Pagacova E; Gerbault-Seureau M; Cernohorska H; Kubickova S; Bonillo C; Rubes J; Robinson TJ
    Chromosome Res; 2010 Feb; 18(2):277-86. PubMed ID: 20204496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Skinks (Reptilia: Scincidae) have highly conserved karyotypes as revealed by chromosome painting.
    Giovannotti M; Caputo V; O'Brien PC; Lovell FL; Trifonov V; Cerioni PN; Olmo E; Ferguson-Smith MA; Rens W
    Cytogenet Genome Res; 2009; 127(2-4):224-31. PubMed ID: 20215726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromosome painting shows that skunks (Mephitidae, Carnivora) have highly rearranged karyotypes.
    Perelman PL; Graphodatsky AS; Dragoo JW; Serdyukova NA; Stone G; Cavagna P; Menotti A; Nie W; O'Brien PC; Wang J; Burkett S; Yuki K; Roelke ME; O'Brien SJ; Yang F; Stanyon R
    Chromosome Res; 2008; 16(8):1215-31. PubMed ID: 19051045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.