These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 1870486)

  • 1. Use of storage phosphor imaging plates in portal imaging and high-energy radiography: the intensifying effect of metallic screens on the sensitivity.
    Barnea G; Navon E; Ginzburg A; Politch J; Roehrig H; Dick CE; Placious RC
    Med Phys; 1991; 18(3):432-8. PubMed ID: 1870486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intensifying effect of metallic screens on the sensitivity of x-ray films for 400-kV bremsstrahlung photons.
    Navon E; Dick CE; Barnea G
    Med Phys; 1991; 18(2):299-304. PubMed ID: 2046618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo optimization of metal/phosphor screens at megavoltage energies.
    Radcliffe T; Barnea G; Wowk B; Rajapakshe R; Shalev S
    Med Phys; 1993; 20(4):1161-9. PubMed ID: 8413026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dose response of BaFBrl: Eu2+ storage phosphor plates exposed to megavoltage photon beams.
    Li HH; Gonzalez AL; Ji H; Duggan DM
    Med Phys; 2007 Jan; 34(1):103-11. PubMed ID: 17278495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of optical transport effects on EPID dosimetry using Geant4.
    Blake SJ; Vial P; Holloway L; Greer PB; McNamara AL; Kuncic Z
    Med Phys; 2013 Apr; 40(4):041708. PubMed ID: 23556878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo study on the imaging performance of powder Lu2SiO5:Ce phosphor screens under x-ray excitation: comparison with Gd2O2S:Tb screens.
    Liaparinos PF; Kandarakis IS; Cavouras DA; Delis HB; Panayiotakis GS
    Med Phys; 2007 May; 34(5):1724-33. PubMed ID: 17555254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blurring artifacts in megavoltage radiography with a flat-panel imaging system: comparison of Monte Carlo simulations with measurements.
    Schach von Wittenau AE; Logan CM; Aufderheide MB; Slone DM
    Med Phys; 2002 Nov; 29(11):2559-70. PubMed ID: 12462723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies of x-ray energy absorption and quantum noise properties of x-ray screens by use of Monte Carlo simulation.
    Chan HP; Doi K
    Med Phys; 1984; 11(1):37-46. PubMed ID: 6700552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. X-ray scatter in megavoltage transmission radiography: physical characteristics and influence on image quality.
    Jaffray DA; Battista JJ; Fenster A; Munro P
    Med Phys; 1994 Jan; 21(1):45-60. PubMed ID: 8164588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The imaging performance of compact Lu2O3:Eu powdered phosphor screens: Monte Carlo simulation for applications in mammography.
    Liaparinos PF; Kandarakis IS
    Med Phys; 2009 Jun; 36(6):1985-97. PubMed ID: 19610287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overestimations in zero frequency DQE of x-ray imaging converters assessed by Monte Carlo techniques based on the study of energy impartation events.
    Liaparinos PF; Kandarakis IS
    Med Phys; 2011 Jul; 38(7):4440-50. PubMed ID: 21859045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling granular phosphor screens by Monte Carlo methods.
    Liaparinos PF; Kandarakis IS; Cavouras DA; Delis HB; Panayiotakis GS
    Med Phys; 2006 Dec; 33(12):4502-14. PubMed ID: 17278802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Segmented crystalline scintillators: an initial investigation of high quantum efficiency detectors for megavoltage x-ray imaging.
    Sawant A; Antonuk LE; El-Mohri Y; Zhao Q; Li Y; Su Z; Wang Y; Yamamoto J; Du H; Cunningham I; Klugerman M; Shah K
    Med Phys; 2005 Oct; 32(10):3067-83. PubMed ID: 16279059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Image information transfer properties of x-ray intensifying screens in the energy range from 17 to 320 keV.
    Ginzburg A; Dick CE
    Med Phys; 1993; 20(4):1013-21. PubMed ID: 8413008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical photon transport in powdered-phosphor scintillators. Part 1. Multiple-scattering and validity of the Boltzmann transport equation.
    Poludniowski GG; Evans PM
    Med Phys; 2013 Apr; 40(4):041904. PubMed ID: 23556898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Monte Carlo evaluation of noise and resolution properties of granular phosphor screens.
    Liaparinos PF; Kandarakis IS
    Phys Med Biol; 2009 Feb; 54(4):859-74. PubMed ID: 19141882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of image quality in portal imaging using a combination of a storage phosphor plate and diagnostic cassette.
    Fujita H; Yamaguchi M; Fujioka T; Fukuda H; Murase K
    Br J Radiol; 2009 Jun; 82(978):504-8. PubMed ID: 19153183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the kinestatic charge detection system as a high detective quantum efficiency electronic portal imaging device.
    Samant SS; Gopal A
    Med Phys; 2006 Sep; 33(9):3557-67. PubMed ID: 17022252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Grooved phosphor screens for on-line portal imaging.
    Wowk B; Shalev S; Radcliffe T
    Med Phys; 1993; 20(6):1641-51. PubMed ID: 8309436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. X-ray induced luminescence and spatial resolution of La2O2S:Tb phosphor screens.
    Kandarakis I; Cavouras D; Panayiotakis G; Agelis T; Nomicos C; Giakoumakis G
    Phys Med Biol; 1996 Feb; 41(2):297-307. PubMed ID: 8746111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.