These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 1870493)

  • 1. Extra lethal damage due to residual incompletely repaired sublethal damage in hyperfractionated and continuous radiation treatment.
    Chen J; van de Geijn J; Goffman T
    Med Phys; 1991; 18(3):488-96. PubMed ID: 1870493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between the recovery from sublethal X-ray damage and the rejoining of chromosome breaks in normal human fibroblasts.
    Bedford JS; Cornforth MN
    Radiat Res; 1987 Sep; 111(3):406-23. PubMed ID: 3659276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in tumor cell response due to prolonged dose delivery times in fractionated radiation therapy.
    Paganetti H
    Int J Radiat Oncol Biol Phys; 2005 Nov; 63(3):892-900. PubMed ID: 16199319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new incomplete-repair model based on a 'reciprocal-time' pattern of sublethal damage repair.
    Dale RG; Fowler JF; Jones B
    Acta Oncol; 1999; 38(7):919-29. PubMed ID: 10606421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dose-rate effects in external beam radiotherapy redux.
    Ling CC; Gerweck LE; Zaider M; Yorke E
    Radiother Oncol; 2010 Jun; 95(3):261-8. PubMed ID: 20363041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovery from sublethal damage is reversibly inhibited by hypertonic saline: the effects of 0.23 M sodium chloride.
    Ikebuchi M; Kimura H
    Radiat Res; 1998 Oct; 150(4):416-22. PubMed ID: 9768855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for reduced capacity for damage accumulation and repair in plateau-phase C3H 10T1/2 cells following multiple-dose irradiation with gamma rays.
    Ngo FQ; Youngman K; Suzuki S; Koumoundouros I; Iliakis G
    Radiat Res; 1986 Jun; 106(3):380-95. PubMed ID: 3714980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Pitfalls of hyperfractionation: theoretical considerations of effect of repair time on late radiation damage].
    Shigematsu N; Ito H; Kubo A; Dokiya T
    Nihon Igaku Hoshasen Gakkai Zasshi; 1996 Jul; 56(8):599-604. PubMed ID: 8797353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Importance of cell proliferative state and potentially lethal damage repair on radiation effectiveness: implications for combined tumor treatments (review).
    Barendsen GW; Van Bree C; Franken NA
    Int J Oncol; 2001 Aug; 19(2):247-56. PubMed ID: 11445835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The kinetics of repair of sublethal radiation-induced damage in pig skin: studies with multiple interfraction intervals.
    van den Aardweg GJ; Hopewell JW; Guttenberger R
    Radiat Res; 1996 May; 145(5):586-94. PubMed ID: 8619024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of dosage in the planning of intracavitary irradiation].
    Chekhonadskiĭ VN; Mar'ina LA; Titova VA; Kiseleva VN
    Vopr Onkol; 1998; 44(5):551-5. PubMed ID: 9884713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Derivation of the optimum dose per fraction from the linear quadratic model.
    Jones B; Tan LT; Dale RG
    Br J Radiol; 1995 Aug; 68(812):894-902. PubMed ID: 7551788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences in repair of radiation induced damage in two human tumor cell lines as measured by cell survival and alkaline DNA unwinding.
    Schwachöfer JH; Crooijmans RP; Hoogenhout H; Kal HB; Schaapveld RQ; Wessels J
    Strahlenther Onkol; 1991 Jan; 167(1):35-40. PubMed ID: 1992541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The combined effects of sublethal damage repair, cellular repopulation and redistribution in the mitotic cycle. I. Survival probabilities after exposure to radiation.
    Zaider M; Wuu CS; Minerbo GN
    Radiat Res; 1996 Apr; 145(4):457-66. PubMed ID: 8600506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Split-dose recovery and protein synthesis in X-irradiated CHO cells.
    Yezzi MJ; Blakely EA; Tobias CA
    Radiat Res; 1988 May; 114(2):281-96. PubMed ID: 3375428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The application of the linear-quadratic model to fractionated radiotherapy when there is incomplete normal tissue recovery between fractions, and possible implications for treatments involving multiple fractions per day.
    Dale RG
    Br J Radiol; 1986 Sep; 59(705):919-27. PubMed ID: 3756389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A generalized linear-quadratic model incorporating reciprocal time pattern of radiation damage repair.
    Huang Z; Mayr NA; Lo SS; Wang JZ; Jia G; Yuh WT; Johnke R
    Med Phys; 2012 Jan; 39(1):224-30. PubMed ID: 22225291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of experimental design and data analysis on the determination of recovery kinetics of radiation damage between acute dose-rate treatments in vivo.
    Joiner MC; Rojas A; Michael BD
    Int J Radiat Biol; 1990 Jan; 57(1):143-62. PubMed ID: 1967286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of cell survival after multiple fractions per day and low-dose-rate irradiation of two in vitro cultured rat tumor cell lines.
    van Rongen E
    Radiat Res; 1985 Oct; 104(1):28-46. PubMed ID: 4048393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple components of split-dose repair in plateau-phase mammalian cells: a new challenge for phenomenological modelers.
    Nelson JM; Braby LA; Metting NF; Roesch WC
    Radiat Res; 1990 Feb; 121(2):154-60. PubMed ID: 2305032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.