These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 1870497)

  • 1. Effect of tissue inhomogeneity on dose distribution of continuous activity of low-energy electrons in bone marrow cavities with different topologies.
    Kwok CS; Bialobzyski PJ; Yu SK
    Med Phys; 1991; 18(3):533-41. PubMed ID: 1870497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of tissue inhomogeneity on dose distribution of point sources of low-energy electrons.
    Kwok CS; Bialobzyski PJ; Yu SK; Prestwich WV
    Med Phys; 1990; 17(5):786-93. PubMed ID: 2233564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Skeletal dosimetry in a voxel-based rat phantom for internal exposures to photons and electrons.
    Xie T; Han D; Liu Y; Sun W; Liu Q
    Med Phys; 2010 May; 37(5):2167-78. PubMed ID: 20527551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling energy deposition in trabecular spongiosa using the Monte Carlo code PENELOPE.
    Gersh JA; Dingfelder M; Toburen LH
    Health Phys; 2007 Jul; 93(1):47-59. PubMed ID: 17563492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A three-dimensional transport model for determining absorbed fractions of energy for electrons within trabecular bone.
    Bouchet LG; Jokisch DW; Bolch WE
    J Nucl Med; 1999 Nov; 40(11):1947-66. PubMed ID: 10565793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of electron dose-point kernels in water generated by the Monte Carlo codes, PENELOPE, GEANT4, MCNPX, and ETRAN.
    Uusijärvi H; Chouin N; Bernhardt P; Ferrer L; Bardiès M; Forssell-Aronsson E
    Cancer Biother Radiopharm; 2009 Aug; 24(4):461-7. PubMed ID: 19694581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calculation of electron and isotopes dose point kernels with FLUKA Monte Carlo code for dosimetry in nuclear medicine therapy.
    Botta F; Mairani A; Battistoni G; Cremonesi M; Di Dia A; Fassò A; Ferrari A; Ferrari M; Paganelli G; Pedroli G; Valente M
    Med Phys; 2011 Jul; 38(7):3944-54. PubMed ID: 21858991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculation of radiation dose at a bone-to-marrow interface using Monte Carlo modeling techniques (EGS4).
    Johnson JC; Langhorst SM; Loyalka SK; Volkert WA; Ketring AR
    J Nucl Med; 1992 Apr; 33(4):623-8. PubMed ID: 1552352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Voxel size effects in three-dimensional nuclear magnetic resonance microscopy performed for trabecular bone dosimetry.
    Rajon DA; Jokisch DW; Patton PW; Shah AP; Bolch WE
    Med Phys; 2000 Nov; 27(11):2624-35. PubMed ID: 11128316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An assessment of bone marrow and bone endosteum dosimetry methods for photon sources.
    Lee C; Lee C; Shah AP; Bolch WE
    Phys Med Biol; 2006 Nov; 51(21):5391-407. PubMed ID: 17047259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface area overestimation within three-dimensional digital images and its consequence for skeletal dosimetry.
    Rajon DA; Patton PW; Shah AP; Watchman CJ; Bolch WE
    Med Phys; 2002 May; 29(5):682-93. PubMed ID: 12033563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical models, cross sections, and numerical approximations used in MCNP and GEANT4 Monte Carlo codes for photon and electron absorbed fraction calculation.
    Yoriyaz H; Moralles M; Siqueira Pde T; Guimarães Cda C; Cintra FB; dos Santos A
    Med Phys; 2009 Nov; 36(11):5198-213. PubMed ID: 19994530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A three-dimensional transport model for determining absorbed fractions of energy for electrons within cortical bone.
    Bouchet LG; Bolch WE
    J Nucl Med; 1999 Dec; 40(12):2115-24. PubMed ID: 10616894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Latent uncertainties of the precalculated track Monte Carlo method.
    Renaud MA; Roberge D; Seuntjens J
    Med Phys; 2015 Jan; 42(1):479-90. PubMed ID: 25563287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Backscatter and dose perturbations for low- to medium-energy electron point sources at the interface between materials with different atomic numbers.
    Buffa FM; Verhaegen F
    Radiat Res; 2004 Dec; 162(6):693-701. PubMed ID: 15548119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone and mucosal dosimetry in skin radiation therapy: a Monte Carlo study using kilovoltage photon and megavoltage electron beams.
    Chow JC; Jiang R
    Phys Med Biol; 2012 Jun; 57(12):3885-99. PubMed ID: 22642985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A dose point kernel database using GATE Monte Carlo simulation toolkit for nuclear medicine applications: comparison with other Monte Carlo codes.
    Papadimitroulas P; Loudos G; Nikiforidis GC; Kagadis GC
    Med Phys; 2012 Aug; 39(8):5238-47. PubMed ID: 22894448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calculation of photon energy deposition kernels and electron dose point kernels in water.
    Mainegra-Hing E; Rogers DW; Kawrakow I
    Med Phys; 2005 Mar; 32(3):685-99. PubMed ID: 15839340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New electron backscatter correction factors for accurate skin depth dose calculation from skin contamination by hot particles.
    Chibani O
    Health Phys; 2001 Oct; 81(4):419-25. PubMed ID: 11569636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Re-evaluation of absorbed fractions for photons and electrons in spheres of various sizes.
    Stabin MG; Konijnenberg MW
    J Nucl Med; 2000 Jan; 41(1):149-60. PubMed ID: 10647618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.