These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 18705384)

  • 1. Network analysis reveals contrasting effects of intraspecific competition on individual vs. population diets.
    Araújo MS; Guimarães PR; Svanbäck R; Pinheiro A; Guimarães P; Dos Reis SF; Bolnick DI
    Ecology; 2008 Jul; 89(7):1981-93. PubMed ID: 18705384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intraspecific competition drives increased resource use diversity within a natural population.
    Svanbäck R; Bolnick DI
    Proc Biol Sci; 2007 Mar; 274(1611):839-44. PubMed ID: 17251094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid Divergence of Predator Functional Traits Affects Prey Composition in Aquatic Communities.
    Schmid DW; McGee MD; Best RJ; Seehausen O; Matthews B
    Am Nat; 2019 Mar; 193(3):331-345. PubMed ID: 30794448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does intraspecific size variation in a predator affect its diet diversity and top-down control of prey?
    Ingram T; Stutz WE; Bolnick DI
    PLoS One; 2011; 6(6):e20782. PubMed ID: 21687670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resource diversity promotes among-individual diet variation, but not genomic diversity, in lake stickleback.
    Bolnick DI; Ballare KM
    Ecol Lett; 2020 Mar; 23(3):495-505. PubMed ID: 31919988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interplay of individual interactions and turbidity affects the functional response of three-spined sticklebacks Gasterosteus aculeatus.
    Vollset KW; Bailey KM
    J Fish Biol; 2011 Jun; 78(7):1954-64. PubMed ID: 21651543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural selection drives patterns of lake-stream divergence in stickleback foraging morphology.
    Berner D; Adams DC; Grandchamp AC; Hendry AP
    J Evol Biol; 2008 Nov; 21(6):1653-65. PubMed ID: 18691241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative analysis of dental microwear in threespine stickleback: a new approach to analysis of trophic ecology in aquatic vertebrates.
    Purnell MA; Hart PJ; Baines DC; Bell MA
    J Anim Ecol; 2006 Jul; 75(4):967-77. PubMed ID: 17009760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intraguild predation drives evolutionary niche shift in threespine stickleback.
    Ingram T; Svanbäck R; Kraft NJ; Kratina P; Southcott L; Schluter D
    Evolution; 2012 Jun; 66(6):1819-32. PubMed ID: 22671549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Can intraspecific competition drive disruptive selection? An experimental test in natural populations of sticklebacks.
    Bolnick DI
    Evolution; 2004 Mar; 58(3):608-18. PubMed ID: 15119444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assortative mating by diet in a phenotypically unimodal but ecologically variable population of stickleback.
    Snowberg LK; Bolnick DI
    Am Nat; 2008 Nov; 172(5):733-9. PubMed ID: 18834291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specialization of trophic position and habitat use by sticklebacks in an adaptive radiation.
    Matthews B; Marchinko KB; Bolnick DI; Mazumder A
    Ecology; 2010 Apr; 91(4):1025-34. PubMed ID: 20462117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Niche differentiation depends on body size in a cichlid fish: a model system of a community structured according to size regularities.
    Kohda M; Shibata JY; Awata S; Gomagano D; Takeyama T; Hori M; Heg D
    J Anim Ecol; 2008 Sep; 77(5):859-68. PubMed ID: 18624738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intraguild predation leads to genetically based character shifts in the threespine stickleback.
    Miller SE; Metcalf D; Schluter D
    Evolution; 2015 Dec; 69(12):3194-203. PubMed ID: 26527484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predictable patterns of disruptive selection in stickleback in postglacial lakes.
    Bolnick DI; Lau OL
    Am Nat; 2008 Jul; 172(1):1-11. PubMed ID: 18452402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The ecology of asymmetry in stickleback defense structures.
    Reimchen TE; Bergstrom CA
    Evolution; 2009 Jan; 63(1):115-26. PubMed ID: 18803691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA metabarcoding reveals diverse diet of the three-spined stickleback in a coastal ecosystem.
    Jakubavičiūtė E; Bergström U; Eklöf JS; Haenel Q; Bourlat SJ
    PLoS One; 2017; 12(10):e0186929. PubMed ID: 29059215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive genetic variation mediates bottom-up and top-down control in an aquatic ecosystem.
    Rudman SM; Rodriguez-Cabal MA; Stier A; Sato T; Heavyside J; El-Sabaawi RW; Crutsinger GM
    Proc Biol Sci; 2015 Aug; 282(1812):20151234. PubMed ID: 26203004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Foraging performance of two fishes, the threespine stickleback and the Cumaná guppy, under different light backgrounds.
    Zukoshi R; Savelli I; Novales Flamarique I
    Vision Res; 2018 Apr; 145():31-38. PubMed ID: 29678538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diet of Ameerega braccata (Steindachner, 1864) (Anura: Dendrobatidae) from Chapada dos Guimarães and Cuiabá, Mato Grosso State, Brazil.
    Forti LR; Tissiani AS; Mott T; Strüssmann C
    Braz J Biol; 2011 Feb; 71(1):189-96. PubMed ID: 21437417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.