These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 18705875)

  • 1. Indole-3-acetic acid (IAA) biosynthesis in the smut fungus Ustilago maydis and its relevance for increased IAA levels in infected tissue and host tumour formation.
    Reineke G; Heinze B; Schirawski J; Buettner H; Kahmann R; Basse CW
    Mol Plant Pathol; 2008 May; 9(3):339-55. PubMed ID: 18705875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two potential indole-3-acetaldehyde dehydrogenases in the phytopathogenic fungus Ustilago maydis.
    Basse CW; Lottspeich F; Steglich W; Kahmann R
    Eur J Biochem; 1996 Dec; 242(3):648-56. PubMed ID: 9022693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How to make a tumour: cell type specific dissection of Ustilago maydis-induced tumour development in maize leaves.
    Matei A; Ernst C; Günl M; Thiele B; Altmüller J; Walbot V; Usadel B; Doehlemann G
    New Phytol; 2018 Mar; 217(4):1681-1695. PubMed ID: 29314018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of indole-3-acetic acid-producing Escherichia coli by functional expression of IpdC, AspC, and Iad1.
    Romasi EF; Lee J
    J Microbiol Biotechnol; 2013 Dec; 23(12):1726-36. PubMed ID: 24043123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Virulence of the maize smut Ustilago maydis is shaped by organ-specific effectors.
    Schilling L; Matei A; Redkar A; Walbot V; Doehlemann G
    Mol Plant Pathol; 2014 Oct; 15(8):780-9. PubMed ID: 25346968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maize tumors caused by Ustilago maydis require organ-specific genes in host and pathogen.
    Skibbe DS; Doehlemann G; Fernandes J; Walbot V
    Science; 2010 Apr; 328(5974):89-92. PubMed ID: 20360107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissecting defense-related and developmental transcriptional responses of maize during Ustilago maydis infection and subsequent tumor formation.
    Basse CW
    Plant Physiol; 2005 Jul; 138(3):1774-84. PubMed ID: 15980197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of polyamine oxidase activity affects tumor development during the maize-Ustilago maydis interaction.
    Jasso-Robles FI; Jiménez-Bremont JF; Becerra-Flora A; Juárez-Montiel M; Gonzalez ME; Pieckenstain FL; García de la Cruz RF; Rodríguez-Kessler M
    Plant Physiol Biochem; 2016 May; 102():115-24. PubMed ID: 26926794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mixed Transcriptome Analysis Revealed the Possible Interaction Mechanisms between
    Zhang ZP; Song SX; Liu YC; Zhu XR; Jiang YF; Shi LT; Jiang JZ; Miao MM
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Indole-3-Acetic Acid Is Synthesized by the Endophyte
    Jahn L; Hofmann U; Ludwig-Müller J
    Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33800748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of indole-3-pyruvic acid pathway-mediated biosynthesis of auxin in Neurospora crassa.
    Sardar P; Kempken F
    PLoS One; 2018; 13(2):e0192293. PubMed ID: 29420579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The WOPR Protein Ros1 Is a Master Regulator of Sporogenesis and Late Effector Gene Expression in the Maize Pathogen Ustilago maydis.
    Tollot M; Assmann D; Becker C; Altmüller J; Dutheil JY; Wegner CE; Kahmann R
    PLoS Pathog; 2016 Jun; 12(6):e1005697. PubMed ID: 27332891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aberrant synthesis of indole-3-acetic acid in Saccharomyces cerevisiae triggers morphogenic transition, a virulence trait of pathogenic fungi.
    Rao RP; Hunter A; Kashpur O; Normanly J
    Genetics; 2010 May; 185(1):211-20. PubMed ID: 20233857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ustilago maydis secondary metabolism-from genomics to biochemistry.
    Bölker M; Basse CW; Schirawski J
    Fungal Genet Biol; 2008 Aug; 45 Suppl 1():S88-93. PubMed ID: 18585066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the largest effector gene cluster of Ustilago maydis.
    Brefort T; Tanaka S; Neidig N; Doehlemann G; Vincon V; Kahmann R
    PLoS Pathog; 2014 Jul; 10(7):e1003866. PubMed ID: 24992561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A secreted Ustilago maydis effector promotes virulence by targeting anthocyanin biosynthesis in maize.
    Tanaka S; Brefort T; Neidig N; Djamei A; Kahnt J; Vermerris W; Koenig S; Feussner K; Feussner I; Kahmann R
    Elife; 2014; 3():e01355. PubMed ID: 24473076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Indole derivatives produced by the fungus Colletotrichum acutatum causing lime anthracnose and postbloom fruit drop of citrus.
    Chung KR; Shilts T; Ertürk U; Timmer LW; Ueng PP
    FEMS Microbiol Lett; 2003 Sep; 226(1):23-30. PubMed ID: 13129603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neofunctionalization of the secreted Tin2 effector in the fungal pathogen Ustilago maydis.
    Tanaka S; Schweizer G; Rössel N; Fukada F; Thines M; Kahmann R
    Nat Microbiol; 2019 Feb; 4(2):251-257. PubMed ID: 30510169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ustilago maydis reprograms cell proliferation in maize anthers.
    Gao L; Kelliher T; Nguyen L; Walbot V
    Plant J; 2013 Sep; 75(6):903-14. PubMed ID: 23795972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Auxin Biosynthesis: Are the Indole-3-Acetic Acid and Phenylacetic Acid Biosynthesis Pathways Mirror Images?
    Cook SD; Nichols DS; Smith J; Chourey PS; McAdam EL; Quittenden L; Ross JJ
    Plant Physiol; 2016 Jun; 171(2):1230-41. PubMed ID: 27208245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.