These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 18705880)
61. Fungal pathogen-induced changes in the antioxidant systems of leaf peroxisomes from infected tomato plants. Kuzniak E; Skłodowska M Planta; 2005 Sep; 222(1):192-200. PubMed ID: 15843961 [TBL] [Abstract][Full Text] [Related]
62. Changes in lignin biosynthesis and monomer composition in response to benzothiadiazole and root-knot nematode Meloidogyne incognita infection in tomato. Veronico P; Paciolla C; Pomar F; De Leonardis S; García-Ulloa A; Melillo MT J Plant Physiol; 2018 Nov; 230():40-50. PubMed ID: 30145275 [TBL] [Abstract][Full Text] [Related]
63. A tomato ERF transcription factor, SlERF84, confers enhanced tolerance to drought and salt stress but negatively regulates immunity against Pseudomonas syringae pv. tomato DC3000. Li Z; Tian Y; Xu J; Fu X; Gao J; Wang B; Han H; Wang L; Peng R; Yao Q Plant Physiol Biochem; 2018 Nov; 132():683-695. PubMed ID: 30146417 [TBL] [Abstract][Full Text] [Related]
64. Altered pattern of arbuscular mycorrhizal formation in tomato ethylene mutants. de Los Santos RT; Vierheilig H; Ocampo JA; Garrido JM Plant Signal Behav; 2011 May; 6(5):755-8. PubMed ID: 21543888 [TBL] [Abstract][Full Text] [Related]
65. The abiotic stress-responsive NAC-type transcription factor SlNAC4 regulates salt and drought tolerance and stress-related genes in tomato (Solanum lycopersicum). Zhu M; Chen G; Zhang J; Zhang Y; Xie Q; Zhao Z; Pan Y; Hu Z Plant Cell Rep; 2014 Nov; 33(11):1851-63. PubMed ID: 25063324 [TBL] [Abstract][Full Text] [Related]
66. Genome-wide identification of plant-upregulated genes of Erwinia chrysanthemi 3937 using a GFP-based IVET leaf array. Yang S; Perna NT; Cooksey DA; Okinaka Y; Lindow SE; Ibekwe AM; Keen NT; Yang CH Mol Plant Microbe Interact; 2004 Sep; 17(9):999-1008. PubMed ID: 15384490 [TBL] [Abstract][Full Text] [Related]
67. Spontaneous mutation 7B-1 in tomato impairs blue light-induced stomatal opening. Hlavinka J; Nauš J; Fellner M Plant Sci; 2013 Aug; 209():75-80. PubMed ID: 23759105 [TBL] [Abstract][Full Text] [Related]
68. Involvement of salicylic acid, ethylene and jasmonic acid signalling pathways in the susceptibility of tomato to Fusarium oxysporum. Di X; Gomila J; Takken FLW Mol Plant Pathol; 2017 Sep; 18(7):1024-1035. PubMed ID: 28390170 [TBL] [Abstract][Full Text] [Related]
69. Role of dioxygenase α-DOX2 and SA in basal response and in hexanoic acid-induced resistance of tomato (Solanum lycopersicum) plants against Botrytis cinerea. Angulo C; de la O Leyva M; Finiti I; López-Cruz J; Fernández-Crespo E; García-Agustín P; González-Bosch C J Plant Physiol; 2015 Mar; 175():163-73. PubMed ID: 25543862 [TBL] [Abstract][Full Text] [Related]
70. Manipulation of the apoplastic pH of intact plants mimics stomatal and growth responses to water availability and microclimatic variation. Wilkinson S; Davies WJ J Exp Bot; 2008; 59(3):619-31. PubMed ID: 18272924 [TBL] [Abstract][Full Text] [Related]
71. Arabidopsis thaliana expresses multiple lines of defense to counterattack Erwinia chrysanthemi. Fagard M; Dellagi A; Roux C; Périno C; Rigault M; Boucher V; Shevchik VE; Expert D Mol Plant Microbe Interact; 2007 Jul; 20(7):794-805. PubMed ID: 17601167 [TBL] [Abstract][Full Text] [Related]
72. ZmCPK11 is involved in abscisic acid-induced antioxidant defence and functions upstream of ZmMPK5 in abscisic acid signalling in maize. Ding Y; Cao J; Ni L; Zhu Y; Zhang A; Tan M; Jiang M J Exp Bot; 2013 Feb; 64(4):871-84. PubMed ID: 23268839 [TBL] [Abstract][Full Text] [Related]
73. Phytochrome A and B Function Antagonistically to Regulate Cold Tolerance via Abscisic Acid-Dependent Jasmonate Signaling. Wang F; Guo Z; Li H; Wang M; Onac E; Zhou J; Xia X; Shi K; Yu J; Zhou Y Plant Physiol; 2016 Jan; 170(1):459-71. PubMed ID: 26527654 [TBL] [Abstract][Full Text] [Related]
74. The phytopathogen Dickeya dadantii (Erwinia chrysanthemi 3937) is a pathogen of the pea aphid. Grenier AM; Duport G; Pagès S; Condemine G; Rahbé Y Appl Environ Microbiol; 2006 Mar; 72(3):1956-65. PubMed ID: 16517643 [TBL] [Abstract][Full Text] [Related]
75. Abscisic Acid Promotes Susceptibility to the Rice Leaf Blight Pathogen Xanthomonas oryzae pv oryzae by Suppressing Salicylic Acid-Mediated Defenses. Xu J; Audenaert K; Hofte M; De Vleesschauwer D PLoS One; 2013; 8(6):e67413. PubMed ID: 23826294 [TBL] [Abstract][Full Text] [Related]
76. SlyA, a MarR family transcriptional regulator, is essential for virulence in Dickeya dadantii 3937. Haque MM; Kabir MS; Aini LQ; Hirata H; Tsuyumu S J Bacteriol; 2009 Sep; 191(17):5409-18. PubMed ID: 19542281 [TBL] [Abstract][Full Text] [Related]
77. Functional analysis of endo-1,4-β-glucanases in response to Botrytis cinerea and Pseudomonas syringae reveals their involvement in plant-pathogen interactions. Finiti I; Leyva MO; López-Cruz J; Calderan Rodrigues B; Vicedo B; Angulo C; Bennett AB; Grant M; García-Agustín P; González-Bosch C Plant Biol (Stuttg); 2013 Sep; 15(5):819-31. PubMed ID: 23528138 [TBL] [Abstract][Full Text] [Related]
78. Characterization of indigoidine biosynthetic genes in Erwinia chrysanthemi and role of this blue pigment in pathogenicity. Reverchon S; Rouanet C; Expert D; Nasser W J Bacteriol; 2002 Feb; 184(3):654-65. PubMed ID: 11790734 [TBL] [Abstract][Full Text] [Related]
79. Application of amplified fragment length polymorphism fingerprinting for taxonomy and identification of the soft rot bacteria Erwinia carotovora and Erwinia chrysanthemi. Avrova AO; Hyman LJ; Toth RL; Toth IK Appl Environ Microbiol; 2002 Apr; 68(4):1499-508. PubMed ID: 11916661 [TBL] [Abstract][Full Text] [Related]