These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
83. SpUSP, an annexin-interacting universal stress protein, enhances drought tolerance in tomato. Loukehaich R; Wang T; Ouyang B; Ziaf K; Li H; Zhang J; Lu Y; Ye Z J Exp Bot; 2012 Sep; 63(15):5593-606. PubMed ID: 22915741 [TBL] [Abstract][Full Text] [Related]
84. Local and systemic production of nitric oxide in tomato responses to powdery mildew infection. Piterková J; Petrivalský M; Luhová L; Mieslerová B; Sedlárová M; Lebeda A Mol Plant Pathol; 2009 Jul; 10(4):501-13. PubMed ID: 19523103 [TBL] [Abstract][Full Text] [Related]
85. Suppression Subtractive Hybridization analysis provides new insights into the tomato (Solanum lycopersicum L.) response to the plant probiotic microorganism Trichoderma longibrachiatum MK1. De Palma M; D'Agostino N; Proietti S; Bertini L; Lorito M; Ruocco M; Caruso C; Chiusano ML; Tucci M J Plant Physiol; 2016 Jan; 190():79-94. PubMed ID: 26705844 [TBL] [Abstract][Full Text] [Related]
86. Disruption of abscisic acid signaling constitutively activates Arabidopsis resistance to the necrotrophic fungus Plectosphaerella cucumerina. Sánchez-Vallet A; López G; Ramos B; Delgado-Cerezo M; Riviere MP; Llorente F; Fernández PV; Miedes E; Estevez JM; Grant M; Molina A Plant Physiol; 2012 Dec; 160(4):2109-24. PubMed ID: 23037505 [TBL] [Abstract][Full Text] [Related]
87. Ultraviolet radiation enhances salicylic acid-mediated defense signaling and resistance to Pseudomonas syringae DC3000 in a jasmonic acid-deficient tomato mutant. Escobar Bravo R; Chen G; Grosser K; Van Dam NM; Leiss KA; Klinkhamer PGL Plant Signal Behav; 2019; 14(4):e1581560. PubMed ID: 30782061 [TBL] [Abstract][Full Text] [Related]
89. Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Jiang M; Zhang J Plant Cell Physiol; 2001 Nov; 42(11):1265-73. PubMed ID: 11726712 [TBL] [Abstract][Full Text] [Related]
90. Reduced de-etiolation of hypocotyl growth in a tomato mutant is associated with hypersensitivity to, and high endogenous levels of, abscisic acid. Fellner M; Zhang R; Pharis RP; Sawhney VK J Exp Bot; 2001 Apr; 52(357):725-38. PubMed ID: 11413209 [TBL] [Abstract][Full Text] [Related]
91. Control of Ascorbate Peroxidase 2 expression by hydrogen peroxide and leaf water status during excess light stress reveals a functional organisation of Arabidopsis leaves. Fryer MJ; Ball L; Oxborough K; Karpinski S; Mullineaux PM; Baker NR Plant J; 2003 Feb; 33(4):691-705. PubMed ID: 12609042 [TBL] [Abstract][Full Text] [Related]
92. Occurrence of Bacterial Stem Rot, Caused by Erwinia chrysanthemi, on Field-Grown Tomato in Florida. Chellemi DO; Dankers HA; Hill K; Cullen RE; Simone GW; Gooch MD; Allingham JE Plant Dis; 1998 Jul; 82(7):831. PubMed ID: 30856964 [TBL] [Abstract][Full Text] [Related]
93. Inhibition of SlMPK1, SlMPK2, and SlMPK3 Disrupts Defense Signaling Pathways and Enhances Tomato Fruit Susceptibility to Botrytis cinerea. Zheng Y; Yang Y; Liu C; Chen L; Sheng J; Shen L J Agric Food Chem; 2015 Jun; 63(22):5509-17. PubMed ID: 25910076 [TBL] [Abstract][Full Text] [Related]
94. HecA, a member of a class of adhesins produced by diverse pathogenic bacteria, contributes to the attachment, aggregation, epidermal cell killing, and virulence phenotypes of Erwinia chrysanthemi EC16 on Nicotiana clevelandii seedlings. Rojas CM; Ham JH; Deng WL; Doyle JJ; Collmer A Proc Natl Acad Sci U S A; 2002 Oct; 99(20):13142-7. PubMed ID: 12271135 [TBL] [Abstract][Full Text] [Related]
95. Comparative transcriptome profiling of the response to Pyrenochaeta lycopersici in resistant tomato cultivar Mogeor and its background genotype-susceptible Moneymaker. Milc J; Bagnaresi P; Aragona M; Valente MT; Biselli C; Infantino A; Francia E; Pecchioni N Funct Integr Genomics; 2019 Sep; 19(5):811-826. PubMed ID: 31104179 [TBL] [Abstract][Full Text] [Related]
96. The ybiT gene of Erwinia chrysanthemi codes for a putative ABC transporter and is involved in competitiveness against endophytic bacteria during infection. Llama-Palacios A; López-Solanilla E; Rodríguez-Palenzuela P Appl Environ Microbiol; 2002 Apr; 68(4):1624-30. PubMed ID: 11916677 [TBL] [Abstract][Full Text] [Related]
97. ABA Suppresses Botrytis cinerea Elicited NO Production in Tomato to Influence H2O2 Generation and Increase Host Susceptibility. Sivakumaran A; Akinyemi A; Mandon J; Cristescu SM; Hall MA; Harren FJ; Mur LA Front Plant Sci; 2016; 7():709. PubMed ID: 27252724 [TBL] [Abstract][Full Text] [Related]
98. Catabolism of raffinose, sucrose, and melibiose in Erwinia chrysanthemi 3937. Hugouvieux-Cotte-Pattat N; Charaoui-Boukerzaza S J Bacteriol; 2009 Nov; 191(22):6960-7. PubMed ID: 19734309 [TBL] [Abstract][Full Text] [Related]
99. Efflux pump gene expression in Erwinia chrysanthemi is induced by exposure to phenolic acids. Ravirala RS; Barabote RD; Wheeler DM; Reverchon S; Tatum O; Malouf J; Liu H; Pritchard L; Hedley PE; Birch PR; Toth IK; Payton P; San Francisco MJ Mol Plant Microbe Interact; 2007 Mar; 20(3):313-20. PubMed ID: 17378434 [TBL] [Abstract][Full Text] [Related]
100. Analysis of the LacI family regulators of Erwinia chrysanthemi 3937, involvement in the bacterial phytopathogenicity. Van Gijsegem F; Wlodarczyk A; Cornu A; Reverchon S; Hugouvieux-Cotte-Pattat N Mol Plant Microbe Interact; 2008 Nov; 21(11):1471-81. PubMed ID: 18842096 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]