These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 18706388)

  • 1. Interactions of a Rhodococcus sp. biosurfactant trehalose lipid with phosphatidylethanolamine membranes.
    Ortiz A; Teruel JA; Espuny MJ; Marqués A; Manresa A; Aranda FJ
    Biochim Biophys Acta; 2008 Dec; 1778(12):2806-13. PubMed ID: 18706388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions of a bacterial biosurfactant trehalose lipid with phosphatidylserine membranes.
    Ortiz A; Teruel JA; Espuny MJ; Marqués A; Manresa A; Aranda FJ
    Chem Phys Lipids; 2009 Mar; 158(1):46-53. PubMed ID: 19046957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Domain formation by a Rhodococcus sp. biosurfactant trehalose lipid incorporated into phosphatidylcholine membranes.
    Aranda FJ; Teruel JA; Espuny MJ; Marqués A; Manresa A; Palacios-Lidón E; Ortiz A
    Biochim Biophys Acta; 2007 Oct; 1768(10):2596-604. PubMed ID: 17662234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of a bacterial trehalose lipid on phosphatidylglycerol membranes.
    Ortiz A; Teruel JA; Manresa Á; Espuny MJ; Marqués A; Aranda FJ
    Biochim Biophys Acta; 2011 Aug; 1808(8):2067-72. PubMed ID: 21600191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of the physical properties of dielaidoylphosphatidylethanolamine membranes by a dirhamnolipid biosurfactant produced by Pseudomonas aeruginosa.
    Sánchez M; Teruel JA; Espuny MJ; Marqués A; Aranda FJ; Manresa A; Ortiz A
    Chem Phys Lipids; 2006 Jul; 142(1-2):118-27. PubMed ID: 16678142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of a peptide model of a hydrophobic transmembrane alpha-helical segment of a membrane protein with phosphatidylethanolamine bilayers: differential scanning calorimetric and Fourier transform infrared spectroscopic studies.
    Zhang YP; Lewis RN; Hodges RS; McElhaney RN
    Biophys J; 1995 Mar; 68(3):847-57. PubMed ID: 7756552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential scanning calorimetry and Fourier transform infrared spectroscopic studies of phospholipid organization and lipid-peptide interactions in nanoporous substrate-supported lipid model membranes.
    Alaouie AM; Lewis RN; McElhaney RN
    Langmuir; 2007 Jun; 23(13):7229-34. PubMed ID: 17530791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calorimetric and spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylethanolamine bilayers.
    McMullen TP; Lewis RN; McElhaney RN
    Biochim Biophys Acta; 1999 Jan; 1416(1-2):119-34. PubMed ID: 9889344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions of a bacterial trehalose lipid with phosphatidylglycerol membranes at low ionic strength.
    Teruel JA; Ortiz A; Aranda FJ
    Chem Phys Lipids; 2014 Jul; 181():34-9. PubMed ID: 24704470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calorimetric and spectroscopic studies of the polymorphic phase behavior of a homologous series of n-saturated 1,2-diacyl phosphatidylethanolamines.
    Lewis RN; McElhaney RN
    Biophys J; 1993 Apr; 64(4):1081-96. PubMed ID: 8494972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies of the structure and organization of cationic lipid bilayer membranes: calorimetric, spectroscopic, and x-ray diffraction studies of linear saturated P-O-ethyl phosphatidylcholines.
    Lewis RN; Winter I; Kriechbaum M; Lohner K; McElhaney RN
    Biophys J; 2001 Mar; 80(3):1329-42. PubMed ID: 11222294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential scanning calorimetric and Fourier transform infrared spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylserine bilayer membranes.
    McMullen TP; Lewis RN; McElhaney RN
    Biophys J; 2000 Oct; 79(4):2056-65. PubMed ID: 11023909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of a trehalose lipid biosurfactant produced by Rhodococcus erythropolis 51T7 with a secretory phospholipase A2.
    Zaragoza A; Teruel JA; Aranda FJ; Ortiz A
    J Colloid Interface Sci; 2013 Oct; 408():132-7. PubMed ID: 23948458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of a Rhodococcus sp. trehalose lipid biosurfactant with model proteins: thermodynamic and structural changes.
    Zaragoza A; Teruel JA; Aranda FJ; Marqués A; Espuny MJ; Manresa Á; Ortiz A
    Langmuir; 2012 Jan; 28(2):1381-90. PubMed ID: 22172005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of membrane permeabilization by a bacterial trehalose lipid biosurfactant produced by Rhodococcus sp.
    Zaragoza A; Aranda FJ; Espuny MJ; Teruel JA; Marqués A; Manresa A; Ortiz A
    Langmuir; 2009 Jul; 25(14):7892-8. PubMed ID: 19391573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A bacterial monorhamnolipid alters the biophysical properties of phosphatidylethanolamine model membranes.
    Abbasi H; Aranda FJ; Noghabi KA; Ortiz A
    Biochim Biophys Acta; 2013 Sep; 1828(9):2083-90. PubMed ID: 23643890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of fatty acyl chain length and structure on the lamellar gel to liquid-crystalline and lamellar to reversed hexagonal phase transitions of aqueous phosphatidylethanolamine dispersions.
    Lewis RN; Mannock DA; McElhaney RN; Turner DC; Gruner SM
    Biochemistry; 1989 Jan; 28(2):541-8. PubMed ID: 2713331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organotin compounds promote the formation of non-lamellar phases in phosphatidylethanolamine membranes.
    Chicano JJ; Ortiz A; Teruel JA; Aranda FJ
    Biochim Biophys Acta; 2002 Jan; 1558(1):70-81. PubMed ID: 11750266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A differential scanning calorimetric and 31P NMR spectroscopic study of the effect of transmembrane alpha-helical peptides on the lamellar-reversed hexagonal phase transition of phosphatidylethanolamine model membranes.
    Liu F; Lewis RN; Hodges RS; McElhaney RN
    Biochemistry; 2001 Jan; 40(3):760-8. PubMed ID: 11170393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues.
    Benesch MG; Mannock DA; Lewis RN; McElhaney RN
    Chem Phys Lipids; 2014 Jan; 177():71-90. PubMed ID: 24296232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.