These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 18706539)

  • 1. A new method to record and control for 2D-movement kinematics during functional magnetic resonance imaging (fMRI).
    Hauptmann B; Sosnik R; Smikt O; Okon E; Manor D; Kushnir T; Flash T; Karni A
    Cortex; 2009 Mar; 45(3):407-17. PubMed ID: 18706539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resistance-based high resolution recording of predefined 2-dimensional pen trajectories in an fMRI setting.
    Reithler J; Reithler H; van den Boogert E; Goebel R; van Mier H
    J Neurosci Methods; 2006 Apr; 152(1-2):10-7. PubMed ID: 16191437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-magnetic equipment for the high-resolution quantification of finger kinematics during functional studies of bimanual coordination.
    De Luca C; Bertollo M; Comani S
    J Neurosci Methods; 2010 Sep; 192(1):173-84. PubMed ID: 20670653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel functional magnetic resonance imaging compatible search-coil eye-tracking system.
    Oeltermann A; Ku SP; Logothetis NK
    Magn Reson Imaging; 2007 Jul; 25(6):913-22. PubMed ID: 17482787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel technique for examining human brain activity associated with pedaling using fMRI.
    Mehta JP; Verber MD; Wieser JA; Schmit BD; Schindler-Ivens SM
    J Neurosci Methods; 2009 May; 179(2):230-9. PubMed ID: 19428532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endoscopic eye tracking system for fMRI.
    Kanowski M; Rieger JW; Noesselt T; Tempelmann C; Hinrichs H
    J Neurosci Methods; 2007 Feb; 160(1):10-5. PubMed ID: 16978705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mirror-induced visual illusion of hand movements: a functional magnetic resonance imaging study.
    Matthys K; Smits M; Van der Geest JN; Van der Lugt A; Seurinck R; Stam HJ; Selles RW
    Arch Phys Med Rehabil; 2009 Apr; 90(4):675-81. PubMed ID: 19345786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional, automated, real-time video system for tracking limb motion in brain-machine interface studies.
    Peikon ID; Fitzsimmons NA; Lebedev MA; Nicolelis MA
    J Neurosci Methods; 2009 Jun; 180(2):224-33. PubMed ID: 19464514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asymmetric control mechanisms of bimanual coordination: an application of directed connectivity analysis to kinematic and functional MRI data.
    Maki Y; Wong KF; Sugiura M; Ozaki T; Sadato N
    Neuroimage; 2008 Oct; 42(4):1295-304. PubMed ID: 18674627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A-magnetic optic-mechanical device to quantify finger kinematics for fMRI studies of bimanual coordination.
    De Luca C; Comani S; Di Donato L; Caulo M; Bertollo M; Romani GL
    Brain Topogr; 2007; 19(3):155-60. PubMed ID: 17605100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mirror activity in the human brain while observing hand movements: a comparison between EEG desynchronization in the mu-range and previous fMRI results.
    Perry A; Bentin S
    Brain Res; 2009 Jul; 1282():126-32. PubMed ID: 19500557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinematic features of continuous hand reaching movements under simple and complex rhythmical constraints.
    Krasovsky T; Berman S; Liebermann DG
    J Electromyogr Kinesiol; 2010 Aug; 20(4):636-41. PubMed ID: 20382031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel integrative method for analyzing eye and hand behaviour during reaching and grasping in an MRI environment.
    Lawrence JM; Abhari K; Prime SL; Meek BP; Desanghere L; Baugh LA; Marotta JJ
    Behav Res Methods; 2011 Jun; 43(2):399-408. PubMed ID: 21424188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional magnetic resonance imaging of awake behaving macaques.
    Goense JB; Whittingstall K; Logothetis NK
    Methods; 2010 Mar; 50(3):178-88. PubMed ID: 19683056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A low cost fMRI-compatible tracking system using the Nintendo Wii remote.
    Modroño C; Rodríguez-Hernández AF; Marcano F; Navarrete G; Burunat E; Ferrer M; Monserrat R; González-Mora JL
    J Neurosci Methods; 2011 Nov; 202(2):173-81. PubMed ID: 21640136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using ICA and realistic BOLD models to obtain joint EEG/fMRI solutions to the problem of source localization.
    Brookings T; Ortigue S; Grafton S; Carlson J
    Neuroimage; 2009 Jan; 44(2):411-20. PubMed ID: 18845263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and implementation of an MR-compatible whole body video system.
    Neuner I; Wegener P; Stoecker T; Kircher T; Schneider F; Shah NJ
    Neurosci Lett; 2007 Jun; 420(2):122-7. PubMed ID: 17532135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantification of the segmental kinematics of spontaneous infant movements.
    Karch D; Kim KS; Wochner K; Pietz J; Dickhaus H; Philippi H
    J Biomech; 2008 Sep; 41(13):2860-7. PubMed ID: 18707688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface-based functional magnetic resonance imaging analysis of partial brain echo planar imaging data at 1.5 T.
    Jo HJ; Lee JM; Kim JH; Choi CH; Kang DH; Kwon JS; Kim SI
    Magn Reson Imaging; 2009 Jun; 27(5):691-700. PubMed ID: 19036544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A haptic force feedback device for virtual reality-fMRI experiments.
    Di Diodato LM; Mraz R; Baker SN; Graham SJ
    IEEE Trans Neural Syst Rehabil Eng; 2007 Dec; 15(4):570-6. PubMed ID: 18198715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.