These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 18706678)

  • 1. Wetland treatment at extremes of pH: a review.
    Mayes WM; Batty LC; Younger PL; Jarvis AP; Kõiv M; Vohla C; Mander U
    Sci Total Environ; 2009 Jun; 407(13):3944-57. PubMed ID: 18706678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preliminary evaluation of a constructed wetland for treating extremely alkaline (pH 12) steel slag drainage.
    Mayes WM; Aumônier J; Jarvis AP
    Water Sci Technol; 2009; 59(11):2253-63. PubMed ID: 19494466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of constructed wetlands for acid mine drainage abatement and stream restoration.
    Brenner FJ
    Water Sci Technol; 2001; 44(11-12):449-54. PubMed ID: 11804133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of pH on plant litter decomposition and metal cycling in wetland mesocosms supplied with mine drainage.
    Batty LC; Younger PL
    Chemosphere; 2007 Jan; 66(1):158-64. PubMed ID: 16820189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing phosphorus removal in constructed wetlands with ochre from mine drainage treatment.
    Heal KV; Dobbie KE; Bozika E; McHaffie H; Simpson AE; Smith KA
    Water Sci Technol; 2005; 51(9):275-82. PubMed ID: 16042268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of the ecological potential of mine-water treatment wetlands using a baseline survey of macroinvertebrate communities.
    Batty LC; Atkin L; Manning DA
    Environ Pollut; 2005 Dec; 138(3):412-9. PubMed ID: 15993527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of sulfur-reducing bacteria in a wetland system treating acid mine drainage.
    Riefler RG; Krohn J; Stuart B; Socotch C
    Sci Total Environ; 2008 May; 394(2-3):222-9. PubMed ID: 18313728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective remediation of grossly polluted acidic, and metal-rich, spoil heap drainage using a novel, low-cost, permeable reactive barrier in Northumberland, UK.
    Jarvis AP; Moustafa M; Orme PH; Younger PL
    Environ Pollut; 2006 Sep; 143(2):261-8. PubMed ID: 16443312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and performance of a pilot-scale constructed wetland treatment system for natural gas storage produced water.
    Kanagy LE; Johnson BM; Castle JW; Rodgers JH
    Bioresour Technol; 2008 Apr; 99(6):1877-85. PubMed ID: 17566728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From highly polluted Zn-rich acid mine drainage to non-metallic waters: implementation of a multi-step alkaline passive treatment system to remediate metal pollution.
    Macías F; Caraballo MA; Rötting TS; Pérez-López R; Nieto JM; Ayora C
    Sci Total Environ; 2012 Sep; 433():323-30. PubMed ID: 22819882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Passive treatment of acid mine drainage with high metal concentrations using dispersed alkaline substrate.
    Rötting TS; Thomas RC; Ayora C; Carrera J
    J Environ Qual; 2008; 37(5):1741-51. PubMed ID: 18689735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption, sedimentation, and inactivation of E. coli within wastewater treatment wetlands.
    Boutilier L; Jamieson R; Gordon R; Lake C; Hart W
    Water Res; 2009 Sep; 43(17):4370-80. PubMed ID: 19595429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial biomass, activity and community composition in constructed wetlands.
    Truu M; Juhanson J; Truu J
    Sci Total Environ; 2009 Jun; 407(13):3958-71. PubMed ID: 19157517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The universal design, operation and maintenance guidelines for farm constructed wetlands (FCW) in temperate climates.
    Carty A; Scholz M; Heal K; Gouriveau F; Mustafa A
    Bioresour Technol; 2008 Oct; 99(15):6780-92. PubMed ID: 18359625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neutralization of acid mine drainage using the final product from CO2 emissions capture with alkaline paper mill waste.
    Pérez-López R; Castillo J; Quispe D; Nieto JM
    J Hazard Mater; 2010 May; 177(1-3):762-72. PubMed ID: 20080339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sulfate and metal removal in bioreactors treating acid mine drainage dominated with iron and aluminum.
    McCauley CA; O'Sullivan AD; Milke MW; Weber PA; Trumm DA
    Water Res; 2009 Mar; 43(4):961-70. PubMed ID: 19070349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficiency of removal of nitrogen, phosphorus, and zinc from domestic wastewater by a constructed wetland system in rural areas: a case study.
    Abe K; Komada M; Ookuma A
    Water Sci Technol; 2008; 58(12):2427-33. PubMed ID: 19092222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review on numerous modeling approaches for effective, economical and ecological treatment wetlands.
    Kumar JL; Zhao YQ
    J Environ Manage; 2011 Mar; 92(3):400-6. PubMed ID: 21134712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulphur transformation and deposition in the rhizosphere of Juncus effusus in a laboratory-scale constructed wetland.
    Wiessner A; Kuschk P; Jechorek M; Seidel H; Kästner M
    Environ Pollut; 2008 Sep; 155(1):125-31. PubMed ID: 18061323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron and manganese removal by using manganese ore constructed wetlands in the reclamation of steel wastewater.
    Xu JC; Chen G; Huang XF; Li GM; Liu J; Yang N; Gao SN
    J Hazard Mater; 2009 Sep; 169(1-3):309-17. PubMed ID: 19443107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.