BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 18706880)

  • 1. Biocompatibility and bone mineralization potential of 45S5 Bioglass-derived glass-ceramic scaffolds in chick embryos.
    Vargas GE; Mesones RV; Bretcanu O; López JM; Boccaccini AR; Gorustovich A
    Acta Biomater; 2009 Jan; 5(1):374-80. PubMed ID: 18706880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of polyglycolic acid mesh and bioactive glass for soft-tissue engineering scaffolds.
    Day RM; Boccaccini AR; Shurey S; Roether JA; Forbes A; Hench LL; Gabe SM
    Biomaterials; 2004 Dec; 25(27):5857-66. PubMed ID: 15172498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 45S5 Bioglass-derived glass-ceramic scaffolds for bone tissue engineering.
    Chen QZ; Thompson ID; Boccaccini AR
    Biomaterials; 2006 Apr; 27(11):2414-25. PubMed ID: 16336997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioglass-derived glass-ceramic scaffolds: study of cell proliferation and scaffold degradation in vitro.
    Chen QZ; Efthymiou A; Salih V; Boccaccini AR
    J Biomed Mater Res A; 2008 Mar; 84(4):1049-60. PubMed ID: 17685403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro biocompatibility of 45S5 Bioglass-derived glass-ceramic scaffolds coated with poly(3-hydroxybutyrate).
    Bretcanu O; Misra S; Roy I; Renghini C; Fiori F; Boccaccini AR; Salih V
    J Tissue Eng Regen Med; 2009 Feb; 3(2):139-48. PubMed ID: 19170250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional mineralization of dense nanofibrillar collagen-bioglass hybrid scaffolds.
    Marelli B; Ghezzi CE; Barralet JE; Boccaccini AR; Nazhat SN
    Biomacromolecules; 2010 Jun; 11(6):1470-9. PubMed ID: 20443577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro biocompatibility of fluorcanasite glass-ceramics for bone tissue repair.
    Bandyopadhyay-Ghosh S; Reaney IM; Brook IM; Hurrell-Gillingham K; Johnson A; Hatton PV
    J Biomed Mater Res A; 2007 Jan; 80(1):175-83. PubMed ID: 17019726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osteoconductivity of modified fluorcanasite glass-ceramics for bone tissue augmentation and repair.
    Bandyopadhyay-Ghosh S; Faria PE; Johnson A; Felipucci DN; Reaney IM; Salata LA; Brook IM; Hatton PV
    J Biomed Mater Res A; 2010 Sep; 94(3):760-8. PubMed ID: 20336751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Permeability evaluation of 45S5 Bioglass-based scaffolds for bone tissue engineering.
    Ochoa I; Sanz-Herrera JA; García-Aznar JM; Doblaré M; Yunos DM; Boccaccini AR
    J Biomech; 2009 Feb; 42(3):257-60. PubMed ID: 19105999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition.
    Kamitakahara M; Ohtsuki C; Miyazaki T
    J Biomater Appl; 2008 Nov; 23(3):197-212. PubMed ID: 18996965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of porous 45S5 Bioglass-derived glass-ceramic scaffolds by using rice husk as a porogen additive.
    Wu SC; Hsu HC; Hsiao SH; Ho WF
    J Mater Sci Mater Med; 2009 Jun; 20(6):1229-36. PubMed ID: 19160020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Research in the performance of the HA ceramic scaffold added with bioglass].
    Zheng W
    Zhongguo Yi Liao Qi Xie Za Zhi; 2011 Mar; 35(2):100-2. PubMed ID: 21706791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone response to three different chemical compositions of fluorcanasite glass-ceramic.
    da Rocha Barros VM; Liporaci JL; Rosa AL; Junqueira MC; de Oliveira PT; Johnson A; van Noort R
    J Biomed Mater Res A; 2007 Nov; 83(2):480-3. PubMed ID: 17503525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological performance of boron-modified bioactive glass particles implanted in rat tibia bone marrow.
    Gorustovich AA; López JM; Guglielmotti MB; Cabrini RL
    Biomed Mater; 2006 Sep; 1(3):100-5. PubMed ID: 18458389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocompatibility and antibacterial effect of silver doped 3D-glass-ceramic scaffolds for bone grafting.
    Balagna C; Vitale-Brovarone C; Miola M; Verné E; Canuto RA; Saracino S; Muzio G; Fucale G; Maina G
    J Biomater Appl; 2011 Feb; 25(6):595-617. PubMed ID: 20207775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of intraosseous implantation of silica-based bioactive glass particles on rat kidney under experimental renal failure.
    Gorustovich AA; Monserrat AJ; Guglielmotti MB; Cabrini RL
    J Biomater Appl; 2007 Apr; 21(4):431-42. PubMed ID: 16920761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decellularized Bone Matrix/45S5 Bioactive Glass Biocomposite Hydrogel-Based Constructs with Angiogenic and Osteogenic Properties: Ex Ovo and Ex Vivo Evaluations.
    Aytekin E; Vurat MT; Elçin AE; Elçin YM
    Macromol Biosci; 2024 Apr; 24(4):e2300295. PubMed ID: 38102878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A porous scaffold for bone tissue engineering/45S5 Bioglass derived porous scaffolds for co-culturing osteoblasts and endothelial cells.
    Deb S; Mandegaran R; Di Silvio L
    J Mater Sci Mater Med; 2010 Mar; 21(3):893-905. PubMed ID: 20091103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteoconductivity of strontium-doped bioactive glass particles: a histomorphometric study in rats.
    Gorustovich AA; Steimetz T; Cabrini RL; Porto López JM
    J Biomed Mater Res A; 2010 Jan; 92(1):232-7. PubMed ID: 19172615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sintering, crystallisation and biodegradation behaviour of Bioglass-derived glass-ceramics.
    Boccaccini AR; Chen Q; Lefebvre L; Gremillard L; Chevalier J
    Faraday Discuss; 2007; 136():27-44; discussion 107-23. PubMed ID: 17955801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.