BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 18707101)

  • 1. Low-temperature solution synthesis of the non-equilibrium ordered intermetallic compounds Au3Fe, Au3Co, and Au3Ni as nanocrystals.
    Vasquez Y; Luo Z; Schaak RE
    J Am Chem Soc; 2008 Sep; 130(36):11866-7. PubMed ID: 18707101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-temperature polyol synthesis of AuCuSn2 and AuNiSn2: using solution chemistry to access ternary intermetallic compounds as nanocrystals.
    Leonard BM; Bhuvanesh NS; Schaak RE
    J Am Chem Soc; 2005 May; 127(20):7326-7. PubMed ID: 15898777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of atomically ordered AuCu and AuCu(3) nanocrystals from bimetallic nanoparticle precursors.
    Sra AK; Schaak RE
    J Am Chem Soc; 2004 Jun; 126(21):6667-72. PubMed ID: 15161294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metallurgy in a beaker: nanoparticle toolkit for the rapid low-temperature solution synthesis of functional multimetallic solid-state materials.
    Schaak RE; Sra AK; Leonard BM; Cable RE; Bauer JC; Han YF; Means J; Teizer W; Vasquez Y; Funck ES
    J Am Chem Soc; 2005 Mar; 127(10):3506-15. PubMed ID: 15755172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shape-controlled conversion of beta-Sn nanocrystals into intermetallic M-Sn (M=Fe, Co, Ni, Pd) nanocrystals.
    Chou NH; Schaak RE
    J Am Chem Soc; 2007 Jun; 129(23):7339-45. PubMed ID: 17503817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ductile ordered intermetallic alloys.
    Liu CT; Stiegler JO
    Science; 1984 Nov; 226(4675):636-42. PubMed ID: 17774926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multistep solution-mediated formation of AuCuSn2: mechanistic insights for the guided design of intermetallic solid-state materials and complex multimetal nanocrystals.
    Leonard BM; Schaak RE
    J Am Chem Soc; 2006 Sep; 128(35):11475-82. PubMed ID: 16939271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From (Au5Sn + AuSn) physical mixture to phase pure AuSn and Au5Sn intermetallic nanocrystals with tailored morphology: digestive ripening assisted approach.
    Arora N; Jagirdar BR
    Phys Chem Chem Phys; 2014 Jun; 16(23):11381-9. PubMed ID: 24797383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature-induced phase transitions of the ordered superlattice assembly of Au nanoclusters.
    Chaki NK; Vijayamohanan KP
    J Phys Chem B; 2005 Feb; 109(7):2552-8. PubMed ID: 16851256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution synthesis of nanoparticular binary transition metal antimonides.
    Kieslich G; Birkel CS; Stewart A; Kolb U; Tremel W
    Inorg Chem; 2011 Aug; 50(15):6938-43. PubMed ID: 21736318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pawley and Rietveld refinements using electron diffraction from L1₂-type intermetallic Au₃Fe₁-x nanocrystals during their in-situ order-disorder transition.
    Luo Z; Vasquez Y; Bondi JF; Schaak RE
    Ultramicroscopy; 2011 Jul; 111(8):1295-304. PubMed ID: 21864770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrodeposition of Bi(x)Fe(1-x) intermetallic compound nanowire arrays and their magnetic properties.
    Li GR; Tong YX; Kay LG; Liu GK
    J Phys Chem B; 2006 May; 110(18):8965-70. PubMed ID: 16671702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reacting the unreactive: a toolbox of low-temperature solution-mediated reactions for the facile interconversion of nanocrystalline intermetallic compounds.
    Cable RE; Schaak RE
    J Am Chem Soc; 2006 Aug; 128(30):9588-9. PubMed ID: 16866486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphology syntheses and properties of well-defined Prussian Blue nanocrystals by a facile solution approach.
    Shen X; Wu S; Liu Y; Wang K; Xu Z; Liu W
    J Colloid Interface Sci; 2009 Jan; 329(1):188-95. PubMed ID: 18950787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural evolution in the nanoscale diffusion process: a Au-Sn bimetallic system.
    Yu K; Yao T; Pan Z; Wei S; Xie Y
    Dalton Trans; 2009 Dec; (46):10353-8. PubMed ID: 19921072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The chemical phenol extraction of intermetallic particles from casting AlSi5Cu1Mg alloy.
    Mrówka-Nowotnik G; Sieniawski J; Nowotnik A
    J Microsc; 2010 Mar; 237(3):407-10. PubMed ID: 20500407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-crystalline and near-monodispersed NaMF3 (M = Mn, Co, Ni, Mg) and LiMAlF6 (M = Ca, Sr) nanocrystals from cothermolysis of multiple trifluoroacetates in solution.
    Du YP; Zhang YW; Yan ZG; Sun LD; Gao S; Yan CH
    Chem Asian J; 2007 Aug; 2(8):965-74. PubMed ID: 17534994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A family of ductile intermetallic compounds.
    Gschneidner K; Russell A; Pecharsky A; Morris J; Zhang Z; Lograsso T; Hsu D; Lo CH; Ye Y; Slager A; Kesse D
    Nat Mater; 2003 Sep; 2(9):587-91. PubMed ID: 12942069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorinated beta-diketonates of the first row divalent transition metals: new approach to the synthesis of unsolvated species.
    Zhang H; Li B; Sun J; Clérac R; Dikarev EV
    Inorg Chem; 2008 Nov; 47(21):10046-52. PubMed ID: 18831579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observation of redox-induced electron transfer and spin crossover for dinuclear cobalt and iron complexes with the 2,5-di-tert-butyl-3,6-dihydroxy-1,4-benzoquinonate bridging ligand.
    Min KS; Dipasquale AG; Rheingold AL; White HS; Miller JS
    J Am Chem Soc; 2009 May; 131(17):6229-36. PubMed ID: 19358538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.