BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 18707133)

  • 61. Electrochemical DNAzyme sensor for lead based on amplification of DNA-Au bio-bar codes.
    Shen L; Chen Z; Li Y; He S; Xie S; Xu X; Liang Z; Meng X; Li Q; Zhu Z; Li M; Le XC; Shao Y
    Anal Chem; 2008 Aug; 80(16):6323-8. PubMed ID: 18627134
    [TBL] [Abstract][Full Text] [Related]  

  • 62. High-sensitivity detection of carbohydrate antigen 15-3 using a gold/zinc oxide thin film surface plasmon resonance-based biosensor.
    Chang CC; Chiu NF; Lin DS; Chu-Su Y; Liang YH; Lin CW
    Anal Chem; 2010 Feb; 82(4):1207-12. PubMed ID: 20102177
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Aptamer-based biochips for label-free detection of plant virus coat proteins by SPR imaging.
    Lautner G; Balogh Z; Bardóczy V; Mészáros T; Gyurcsányi RE
    Analyst; 2010 May; 135(5):918-26. PubMed ID: 20419239
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Electrochemical thinning of thicker gold film with qualified thickness for surface plasmon resonance sensing.
    Wang J; Shao Y; Jin Y; Wang F; Dong S
    Anal Chem; 2005 Sep; 77(17):5760-5. PubMed ID: 16131093
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Surface plasmon resonance biosensor based on water-soluble ZnO-Au nanocomposites.
    Wang L; Wang J; Zhang S; Sun Y; Zhu X; Cao Y; Wang X; Zhang H; Song D
    Anal Chim Acta; 2009 Oct; 653(1):109-15. PubMed ID: 19800482
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Surface plasmon resonance-based trace detection of small molecules by competitive and signal enhancement immunoreaction.
    Aizawa H; Tozuka M; Kurosawa S; Kobayashi K; Reddy SM; Higuchi M
    Anal Chim Acta; 2007 May; 591(2):191-4. PubMed ID: 17481407
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Electrostatic interaction based approach to thrombin detection by surface-enhanced Raman spectroscopy.
    Hu J; Zheng PC; Jiang JH; Shen GL; Yu RQ; Liu GK
    Anal Chem; 2009 Jan; 81(1):87-93. PubMed ID: 19117446
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Fluorescent-labeled single-strand ATP aptamer DNA: chemo- and enantio-selectivity in sensing adenosine.
    Urata H; Nomura K; Wada S; Akagi M
    Biochem Biophys Res Commun; 2007 Aug; 360(2):459-63. PubMed ID: 17599804
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Sub-attomole oligonucleotide and p53 cDNA determinations via a high-resolution surface plasmon resonance combined with oligonucleotide-capped gold nanoparticle signal amplification.
    Yao X; Li X; Toledo F; Zurita-Lopez C; Gutova M; Momand J; Zhou F
    Anal Biochem; 2006 Jul; 354(2):220-8. PubMed ID: 16762306
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A sensitive, label free electrochemical aptasensor for ATP detection.
    Li W; Nie Z; Xu X; Shen Q; Deng C; Chen J; Yao S
    Talanta; 2009 May; 78(3):954-8. PubMed ID: 19269456
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Detection system based on the conformational change in an aptamer and its application to simple bound/free separation.
    Ogasawara D; Hachiya NS; Kaneko K; Sode K; Ikebukuro K
    Biosens Bioelectron; 2009 Jan; 24(5):1372-6. PubMed ID: 18809306
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Aptamer-based electrochemical sensors with aptamer-complementary DNA oligonucleotides as probe.
    Lu Y; Li X; Zhang L; Yu P; Su L; Mao L
    Anal Chem; 2008 Mar; 80(6):1883-90. PubMed ID: 18290636
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Enhancing sensitivity and selectivity of long-period grating sensors using structure-switching aptamers bound to gold-doped macroporous silica coatings.
    Carrasquilla C; Xiao Y; Xu CQ; Li Y; Brennan JD
    Anal Chem; 2011 Oct; 83(20):7984-91. PubMed ID: 21951178
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A hairpin aptamer-based electrochemical biosensing platform for the sensitive detection of proteins.
    Wu ZS; Zheng F; Shen GL; Yu RQ
    Biomaterials; 2009 May; 30(15):2950-5. PubMed ID: 19254812
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Non-base pairing DNA provides a new dimension for controlling aptamer-linked nanoparticles and sensors.
    Liu J; Lu Y
    J Am Chem Soc; 2007 Jul; 129(27):8634-43. PubMed ID: 17567134
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Optical resonance-enhanced absorption-based near-field immunochip biosensor for allergen detection.
    Maier I; Morgan MR; Lindner W; Pittner F
    Anal Chem; 2008 Apr; 80(8):2694-703. PubMed ID: 18358010
    [TBL] [Abstract][Full Text] [Related]  

  • 77. High sensitivity detection of 16s rRNA using peptide nucleic acid probes and a surface plasmon resonance biosensor.
    Joung HA; Lee NR; Lee SK; Ahn J; Shin YB; Choi HS; Lee CS; Kim S; Kim MG
    Anal Chim Acta; 2008 Dec; 630(2):168-73. PubMed ID: 19012828
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Sensitivity enhancement of SPR biosensor with silver mirror reaction on the Ag/Au film.
    Wang L; Sun Y; Wang J; Zhu X; Jia F; Cao Y; Wang X; Zhang H; Song D
    Talanta; 2009 Apr; 78(1):265-9. PubMed ID: 19174236
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells.
    Herr JK; Smith JE; Medley CD; Shangguan D; Tan W
    Anal Chem; 2006 May; 78(9):2918-24. PubMed ID: 16642976
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Colorimetric determination of urinary adenosine using aptamer-modified gold nanoparticles.
    Chen SJ; Huang YF; Huang CC; Lee KH; Lin ZH; Chang HT
    Biosens Bioelectron; 2008 Jun; 23(11):1749-53. PubMed ID: 18359620
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.