These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 18707688)

  • 1. Quantification of the segmental kinematics of spontaneous infant movements.
    Karch D; Kim KS; Wochner K; Pietz J; Dickhaus H; Philippi H
    J Biomech; 2008 Sep; 41(13):2860-7. PubMed ID: 18707688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toy-oriented changes during early arm movements IV: shoulder-elbow coordination.
    Lee HM; Bhat A; Scholz JP; Galloway JC
    Infant Behav Dev; 2008 Sep; 31(3):447-69. PubMed ID: 18316128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toy-oriented changes during early arm movements: hand kinematics.
    Bhat AN; Galloway JC
    Infant Behav Dev; 2006 Jul; 29(3):358-72. PubMed ID: 17138291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinematic and qualitative analysis of lower-extremity movements in preterm infants with brain lesions.
    van der Heide J; Paolicelli PB; Boldrini A; Cioni G
    Phys Ther; 1999 Jun; 79(6):546-57. PubMed ID: 10372866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shoulder movements during the initial phase of learning manual wheelchair propulsion in able-bodied subjects.
    Roux L; Hanneton S; Roby-Brami A
    Clin Biomech (Bristol, Avon); 2006; 21 Suppl 1():S45-51. PubMed ID: 16274903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinematic assessment of stereotypy in spontaneous movements in infants.
    Karch D; Kang KS; Wochner K; Philippi H; Hadders-Algra M; Pietz J; Dickhaus H
    Gait Posture; 2012 Jun; 36(2):307-11. PubMed ID: 22503388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toy-oriented changes in early arm movements II--joint kinematics.
    Bhat AN; Lee HM; Galloway JC
    Infant Behav Dev; 2007 May; 30(2):307-24. PubMed ID: 17400047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inverse dynamic investigation of voluntary leg lateral movements in weightlessness: a new microgravity-specific strategy.
    Pedrocchi A; Baroni G; Pedotti A; Massion J; Ferrigno G
    J Biomech; 2005 Apr; 38(4):769-77. PubMed ID: 15713298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulations of interlimb and intralimb cutaneous reflexes during simultaneous arm and leg cycling in humans.
    Sakamoto M; Endoh T; Nakajima T; Tazoe T; Shiozawa S; Komiyama T
    Clin Neurophysiol; 2006 Jun; 117(6):1301-11. PubMed ID: 16651023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specific postural support promotes variation in motor behaviour of infants with minor neurological dysfunction.
    de Graaf-Peters VB; De Groot-Hornstra AH; Dirks T; Hadders-Algra M
    Dev Med Child Neurol; 2006 Dec; 48(12):966-72. PubMed ID: 17109784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toy-oriented changes in early arm movements III: constraints on joint kinematics.
    Bhat AN; Galloway JC
    Infant Behav Dev; 2007 Aug; 30(3):515-22. PubMed ID: 17683759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of arm swing direction on forward and backward jump performance.
    Hara M; Shibayama A; Arakawa H; Fukashiro S
    J Biomech; 2008 Sep; 41(13):2806-15. PubMed ID: 18752799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A method for estimating three-dimensional human arm movement with two electromagnetic sensors.
    Rezzoug N; Jacquier-Bret J; Gorce P
    Comput Methods Biomech Biomed Engin; 2010 Dec; 13(6):663-8. PubMed ID: 21153971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Afferent input, efference copy, signal noise, and biases in perception of joint angle during active versus passive elbow movements.
    Gritsenko V; Krouchev NI; Kalaska JF
    J Neurophysiol; 2007 Sep; 98(3):1140-54. PubMed ID: 17615137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction torque contributes to planar reaching at slow speed.
    Yamasaki H; Tagami Y; Fujisawa H; Hoshi F; Nagasaki H
    Biomed Eng Online; 2008 Oct; 7():27. PubMed ID: 18940016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Coordination patterns assessed by a continuous measure of joints coupling during upper limb repetitive movements].
    Draicchio F; Silvetti A; Ranavolo A; Iavicoli S
    G Ital Med Lav Ergon; 2008; 30(3 Suppl):117-9. PubMed ID: 19288802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new method to record and control for 2D-movement kinematics during functional magnetic resonance imaging (fMRI).
    Hauptmann B; Sosnik R; Smikt O; Okon E; Manor D; Kushnir T; Flash T; Karni A
    Cortex; 2009 Mar; 45(3):407-17. PubMed ID: 18706539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Joint kinematics estimate using wearable inertial and magnetic sensing modules.
    Picerno P; Cereatti A; Cappozzo A
    Gait Posture; 2008 Nov; 28(4):588-95. PubMed ID: 18502130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compensation of large motion sensor displacements during long recordings of limb movements.
    Karch D; Kim KS; Wochner K; Philippi H; Pietz J; Dickhaus H
    J Biomech; 2010 Jun; 43(9):1844-8. PubMed ID: 20206358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinematics of human arm reconstructed from spatial tracking system recordings.
    Biryukova EV; Roby-Brami A; Frolov AA; Mokhtari M
    J Biomech; 2000 Aug; 33(8):985-95. PubMed ID: 10828329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.