BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 18707753)

  • 1. Do high levels of diffuse and chronic metal pollution in sediments of Rhine and Meuse floodplains affect structure and functioning of terrestrial ecosystems?
    Rozema J; Notten MJ; Aerts R; van Gestel CA; Hobbelen PH; Hamers TH
    Sci Total Environ; 2008 Dec; 406(3):443-8. PubMed ID: 18707753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Risk assessment of heavy metal pollution for detritivores in floodplain soils in the Biesbosch, The Netherlands, taking bioavailability into account.
    Hobbelen PH; Koolhaas JE; Van Gestel CA
    Environ Pollut; 2004 Jun; 129(3):409-19. PubMed ID: 15016462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heavy metal concentrations in a soil-plant-snail food chain along a terrestrial soil pollution gradient.
    Notten MJ; Oosthoek AJ; Rozema J; Aerts R
    Environ Pollut; 2005 Nov; 138(1):178-90. PubMed ID: 16005127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cycling and ecosystem impact of metals in contaminated calcareous dredged sediment-derived soils (Flanders, Belgium).
    Tack FM; Vandecasteele B
    Sci Total Environ; 2008 Aug; 400(1-3):283-9. PubMed ID: 18644617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of metal pollution on earthworm communities in a contaminated floodplain area: Linking biomarker, community and functional responses.
    van Gestel CA; Koolhaas JE; Hamers T; van Hoppe M; van Roovert M; Korsman C; Reinecke SA
    Environ Pollut; 2009 Mar; 157(3):895-903. PubMed ID: 19062144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter.
    Wang Y; Shi J; Wang H; Lin Q; Chen X; Chen Y
    Ecotoxicol Environ Saf; 2007 May; 67(1):75-81. PubMed ID: 16828162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological and chemical characterization of metal bioavailability in sediments from Lake Roosevelt, Columbia River, Washington, USA.
    Besser JM; Brumbaugh WG; Ivey CD; Ingersoll CG; Moran PW
    Arch Environ Contam Toxicol; 2008 May; 54(4):557-70. PubMed ID: 18060524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Earthworm biomass as additional information for risk assessment of heavy metal biomagnification: a case study for dredged sediment-derived soils and polluted floodplain soils.
    Vandecasteele B; Samyn J; Quataert P; Muys B; Tack FM
    Environ Pollut; 2004 Jun; 129(3):363-75. PubMed ID: 15016458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physico-chemical and biological parameters determine metal bioavailability in soils.
    van Gestel CA
    Sci Total Environ; 2008 Dec; 406(3):385-95. PubMed ID: 18620734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioavailability of heavy metals monitoring water, sediments and fish species from a polluted estuary.
    Vicente-Martorell JJ; Galindo-Riaño MD; García-Vargas M; Granado-Castro MD
    J Hazard Mater; 2009 Mar; 162(2-3):823-36. PubMed ID: 18620807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trace metal behaviour in estuarine and riverine floodplain soils and sediments: a review.
    Du Laing G; Rinklebe J; Vandecasteele B; Meers E; Tack FM
    Sci Total Environ; 2009 Jun; 407(13):3972-85. PubMed ID: 18786698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of metal availability and toxicity in historically polluted floodplain sediments.
    van der Geest HG; León Paumen M
    Sci Total Environ; 2008 Dec; 406(3):419-25. PubMed ID: 18644615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local adaptation of microbial communities to heavy metal stress in polluted sediments of Lake Erie.
    Hoostal MJ; Bidart-Bouzat MG; Bouzat JL
    FEMS Microbiol Ecol; 2008 Jul; 65(1):156-68. PubMed ID: 18559016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Invertebrates control metals and arsenic sequestration as ecosystem engineers.
    Schaller J; Weiske A; Mkandawire M; Dudel EG
    Chemosphere; 2010 Mar; 79(2):169-73. PubMed ID: 20132960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decomposition of heavy metal contaminated nettles (Urtica dioica L.) in soils subjected to heavy metal pollution by river sediments.
    Khan KS; Joergensen RG
    Chemosphere; 2006 Nov; 65(6):981-7. PubMed ID: 16677685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Foliar concentrations of volunteer willows growing on polluted sediment-derived sites versus sites with baseline contamination levels.
    Vandecasteele B; Quataert P; De Vos B; Tack FM; Muys B
    J Environ Monit; 2004 Apr; 6(4):313-21. PubMed ID: 15054540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of tidal regime on the distribution of trace metals in a contaminated tidal freshwater marsh soil colonized with common reed (Phragmites australis).
    Teuchies J; de Deckere E; Bervoets L; Meynendonckx J; van Regenmortel S; Blust R; Meire P
    Environ Pollut; 2008 Sep; 155(1):20-30. PubMed ID: 18158203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal fractionation study on bed sediments of River Yamuna, India.
    Jain CK
    Water Res; 2004 Feb; 38(3):569-78. PubMed ID: 14723925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Field effects of pollutants in dynamic environments. A case study on earthworm populations in river floodplains contaminated with heavy metals.
    Klok C; Goedhart PW; Vandecasteele B
    Environ Pollut; 2007 May; 147(1):26-31. PubMed ID: 17070636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heavy metals in the nase, Chondrostoma nasus (L. 1758), and its intestinal parasite Caryophyllaeus laticeps (Pallas 1781) from Austrian rivers: bioindicative aspects.
    Jirsa F; Leodolter-Dvorak M; Krachler R; Frank C
    Arch Environ Contam Toxicol; 2008 Nov; 55(4):619-26. PubMed ID: 18347839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.