These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 18707815)

  • 1. A novel strategy for prefabrication of large and axially vascularized tissue engineered bone by using an arteriovenous loop.
    Ren LL; Ma DY; Feng X; Mao TQ; Liu YP; Ding Y
    Med Hypotheses; 2008 Nov; 71(5):737-40. PubMed ID: 18707815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comment on "A novel strategy for prefabrication of large and axially vascularized tissue engineered bone by using an arteriovenous loop".
    Jiang X; Wang D; Jin D; Pei G
    Med Hypotheses; 2009 Sep; 73(3):461-2. PubMed ID: 19409712
    [No Abstract]   [Full Text] [Related]  

  • 3. A novel strategy for creating a large amount of engineered fat tissue with an axial vascular pedicle and a prefabricated scaffold.
    Chang Q; Lu F
    Med Hypotheses; 2012 Aug; 79(2):267-70. PubMed ID: 22688400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A medical device for prefabrication of large bone grafts in modern medicine.
    Laflamme C; Rouabhia M
    Med Hypotheses; 2011 Apr; 76(4):489-91. PubMed ID: 21183285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A tissue engineering approach to bone repair in large animal models and in clinical practice.
    Cancedda R; Giannoni P; Mastrogiacomo M
    Biomaterials; 2007 Oct; 28(29):4240-50. PubMed ID: 17644173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cartilage and bone tissue engineering using hydrogels.
    Vinatier C; Guicheux J; Daculsi G; Layrolle P; Weiss P
    Biomed Mater Eng; 2006; 16(4 Suppl):S107-13. PubMed ID: 16823101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The repair of large segmental bone defects in the rabbit with vascularized tissue engineered bone.
    Zhou J; Lin H; Fang T; Li X; Dai W; Uemura T; Dong J
    Biomaterials; 2010 Feb; 31(6):1171-9. PubMed ID: 19880177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scaffold modeling application in the repair of skull defects.
    Wan W; Shi P
    Artif Organs; 2010 Apr; 34(4):339-42. PubMed ID: 19663864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering axially vascularized bone in the sheep arteriovenous-loop model.
    Boos AM; Loew JS; Weigand A; Deschler G; Klumpp D; Arkudas A; Bleiziffer O; Gulle H; Kneser U; Horch RE; Beier JP
    J Tissue Eng Regen Med; 2013 Aug; 7(8):654-64. PubMed ID: 22438065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomaterials/scaffolds. Design of bioactive, multiphasic PCL/collagen type I and type II-PCL-TCP/collagen composite scaffolds for functional tissue engineering of osteochondral repair tissue by using electrospinning and FDM techniques.
    Schumann D; Ekaputra AK; Lam CX; Hutmacher DW
    Methods Mol Med; 2007; 140():101-24. PubMed ID: 18085205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo evaluation of a multiphased scaffold designed for orthopaedic interface tissue engineering and soft tissue-to-bone integration.
    Spalazzi JP; Dagher E; Doty SB; Guo XE; Rodeo SA; Lu HH
    J Biomed Mater Res A; 2008 Jul; 86(1):1-12. PubMed ID: 18442111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone tissue engineering: state of the art and future trends.
    Salgado AJ; Coutinho OP; Reis RL
    Macromol Biosci; 2004 Aug; 4(8):743-65. PubMed ID: 15468269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Clinical application of bone regeneration by in vivo tissue engineering].
    Iino M; Mori Y; Chikazu D; Saijyo H; Ohkubo K; Takato T
    Clin Calcium; 2008 Dec; 18(12):1757-66. PubMed ID: 19043190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long bone defect models for tissue engineering applications: criteria for choice.
    Horner EA; Kirkham J; Wood D; Curran S; Smith M; Thomson B; Yang XB
    Tissue Eng Part B Rev; 2010 Apr; 16(2):263-71. PubMed ID: 19925211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteoinductive biomaterials--properties and relevance in bone repair.
    Habibovic P; de Groot K
    J Tissue Eng Regen Med; 2007; 1(1):25-32. PubMed ID: 18038389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved tissue-engineered bone regeneration by endothelial cell mediated vascularization.
    Yu H; VandeVord PJ; Mao L; Matthew HW; Wooley PH; Yang SY
    Biomaterials; 2009 Feb; 30(4):508-17. PubMed ID: 18973938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo model for evaluating the effects of mechanical stimulation on tissue-engineered bone repair.
    Boerckel JD; Dupont KM; Kolambkar YM; Lin AS; Guldberg RE
    J Biomech Eng; 2009 Aug; 131(8):084502. PubMed ID: 19604025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On scaffold designing for bone regeneration: A computational multiscale approach.
    Sanz-Herrera JA; García-Aznar JM; Doblaré M
    Acta Biomater; 2009 Jan; 5(1):219-29. PubMed ID: 18725187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of flow shear stress and mass transport on the construction of a large-scale tissue-engineered bone in a perfusion bioreactor.
    Li D; Tang T; Lu J; Dai K
    Tissue Eng Part A; 2009 Oct; 15(10):2773-83. PubMed ID: 19226211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Arteriovenous Loop: Engineering of Axially Vascularized Tissue.
    Weigand A; Horch RE; Boos AM; Beier JP; Arkudas A
    Eur Surg Res; 2018; 59(3-4):286-299. PubMed ID: 30244238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.