These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 18708083)

  • 1. The impact of different nanoparticle surface chemistry and size on uptake and toxicity in a murine macrophage cell line.
    Clift MJ; Rothen-Rutishauser B; Brown DM; Duffin R; Donaldson K; Proudfoot L; Guy K; Stone V
    Toxicol Appl Pharmacol; 2008 Nov; 232(3):418-27. PubMed ID: 18708083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The uptake and intracellular fate of a series of different surface coated quantum dots in vitro.
    Clift MJ; Brandenberger C; Rothen-Rutishauser B; Brown DM; Stone V
    Toxicology; 2011 Aug; 286(1-3):58-68. PubMed ID: 21619910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Folate-mediated tumor cell uptake of quantum dots entrapped in lipid nanoparticles.
    Schroeder JE; Shweky I; Shmeeda H; Banin U; Gabizon A
    J Control Release; 2007 Dec; 124(1-2):28-34. PubMed ID: 17928088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An investigation into the potential for different surface-coated quantum dots to cause oxidative stress and affect macrophage cell signalling in vitro.
    Clift MJ; Boyles MS; Brown DM; Stone V
    Nanotoxicology; 2010 Jun; 4(2):139-49. PubMed ID: 20795892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum dot cytotoxicity in vitro: an investigation into the cytotoxic effects of a series of different surface chemistries and their core/shell materials.
    Clift MJ; Varet J; Hankin SM; Brownlee B; Davidson AM; Brandenberger C; Rothen-Rutishauser B; Brown DM; Stone V
    Nanotoxicology; 2011 Dec; 5(4):664-74. PubMed ID: 21105833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-specific cellular uptake of surface-functionalized quantum dots.
    Kelf TA; Sreenivasan VK; Sun J; Kim EJ; Goldys EM; Zvyagin AV
    Nanotechnology; 2010 Jul; 21(28):285105. PubMed ID: 20585157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species.
    Carlson C; Hussain SM; Schrand AM; Braydich-Stolle LK; Hess KL; Jones RL; Schlager JJ
    J Phys Chem B; 2008 Oct; 112(43):13608-19. PubMed ID: 18831567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endo- and exocytosis of zwitterionic quantum dot nanoparticles by live HeLa cells.
    Jiang X; Röcker C; Hafner M; Brandholt S; Dörlich RM; Nienhaus GU
    ACS Nano; 2010 Nov; 4(11):6787-97. PubMed ID: 21028844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The defined presentation of nanoparticles to cells and their surface controlled uptake.
    Alberola AP; Rädler JO
    Biomaterials; 2009 Aug; 30(22):3766-70. PubMed ID: 19375161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeted cellular uptake and siRNA silencing by quantum-dot nanoparticles coated with β-cyclodextrin coupled to amino acids.
    Zhao MX; Li JM; Du L; Tan CP; Xia Q; Mao ZW; Ji LN
    Chemistry; 2011 Apr; 17(18):5171-9. PubMed ID: 21465588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of metal nanoparticle agglomeration, uptake, and interaction using high-illuminating system.
    Skebo JE; Grabinski CM; Schrand AM; Schlager JJ; Hussain SM
    Int J Toxicol; 2007; 26(2):135-41. PubMed ID: 17454253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mannosylated semiconductor quantum dots for the labeling of macrophages.
    Higuchi Y; Oka M; Kawakami S; Hashida M
    J Control Release; 2008 Jan; 125(2):131-6. PubMed ID: 18045722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line.
    Lunov O; Syrovets T; Loos C; Beil J; Delacher M; Tron K; Nienhaus GU; Musyanovych A; Mailänder V; Landfester K; Simmet T
    ACS Nano; 2011 Mar; 5(3):1657-69. PubMed ID: 21344890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of serum on the toxicity of manufactured nanoparticles.
    Clift MJ; Bhattacharjee S; Brown DM; Stone V
    Toxicol Lett; 2010 Oct; 198(3):358-65. PubMed ID: 20705123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative assessment of the comparative nanoparticle-uptake efficiency of a range of cell lines.
    dos Santos T; Varela J; Lynch I; Salvati A; Dawson KA
    Small; 2011 Dec; 7(23):3341-9. PubMed ID: 22009913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Small and stable sulfobetaine zwitterionic quantum dots for functional live-cell imaging.
    Muro E; Pons T; Lequeux N; Fragola A; Sanson N; Lenkei Z; Dubertret B
    J Am Chem Soc; 2010 Apr; 132(13):4556-7. PubMed ID: 20235547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advanced optical imaging reveals the dependence of particle geometry on interactions between CdSe quantum dots and immune cells.
    Aaron JS; Greene AC; Kotula PG; Bachand GD; Timlin JA
    Small; 2011 Feb; 7(3):334-41. PubMed ID: 21294262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the dynamic effect of cys-CdTe quantum dots toward cancer cells in vitro.
    Wu C; Shi L; Li Q; Jiang H; Selke M; Ba L; Wang X
    Chem Res Toxicol; 2010 Jan; 23(1):82-8. PubMed ID: 19961203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of cytocompatibility of surface-modified CdSe/ZnSe quantum dots for BALB/3T3 fibroblast cells.
    Mahto SK; Park C; Yoon TH; Rhee SW
    Toxicol In Vitro; 2010 Jun; 24(4):1070-7. PubMed ID: 20362659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bio-conjugated luminescent quantum dots of doped ZnS: a cyto-friendly system for targeted cancer imaging.
    Manzoor K; Johny S; Thomas D; Setua S; Menon D; Nair S
    Nanotechnology; 2009 Feb; 20(6):065102. PubMed ID: 19417370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.