BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 18708083)

  • 1. The impact of different nanoparticle surface chemistry and size on uptake and toxicity in a murine macrophage cell line.
    Clift MJ; Rothen-Rutishauser B; Brown DM; Duffin R; Donaldson K; Proudfoot L; Guy K; Stone V
    Toxicol Appl Pharmacol; 2008 Nov; 232(3):418-27. PubMed ID: 18708083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The uptake and intracellular fate of a series of different surface coated quantum dots in vitro.
    Clift MJ; Brandenberger C; Rothen-Rutishauser B; Brown DM; Stone V
    Toxicology; 2011 Aug; 286(1-3):58-68. PubMed ID: 21619910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Folate-mediated tumor cell uptake of quantum dots entrapped in lipid nanoparticles.
    Schroeder JE; Shweky I; Shmeeda H; Banin U; Gabizon A
    J Control Release; 2007 Dec; 124(1-2):28-34. PubMed ID: 17928088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An investigation into the potential for different surface-coated quantum dots to cause oxidative stress and affect macrophage cell signalling in vitro.
    Clift MJ; Boyles MS; Brown DM; Stone V
    Nanotoxicology; 2010 Jun; 4(2):139-49. PubMed ID: 20795892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum dot cytotoxicity in vitro: an investigation into the cytotoxic effects of a series of different surface chemistries and their core/shell materials.
    Clift MJ; Varet J; Hankin SM; Brownlee B; Davidson AM; Brandenberger C; Rothen-Rutishauser B; Brown DM; Stone V
    Nanotoxicology; 2011 Dec; 5(4):664-74. PubMed ID: 21105833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-specific cellular uptake of surface-functionalized quantum dots.
    Kelf TA; Sreenivasan VK; Sun J; Kim EJ; Goldys EM; Zvyagin AV
    Nanotechnology; 2010 Jul; 21(28):285105. PubMed ID: 20585157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species.
    Carlson C; Hussain SM; Schrand AM; Braydich-Stolle LK; Hess KL; Jones RL; Schlager JJ
    J Phys Chem B; 2008 Oct; 112(43):13608-19. PubMed ID: 18831567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endo- and exocytosis of zwitterionic quantum dot nanoparticles by live HeLa cells.
    Jiang X; Röcker C; Hafner M; Brandholt S; Dörlich RM; Nienhaus GU
    ACS Nano; 2010 Nov; 4(11):6787-97. PubMed ID: 21028844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The defined presentation of nanoparticles to cells and their surface controlled uptake.
    Alberola AP; Rädler JO
    Biomaterials; 2009 Aug; 30(22):3766-70. PubMed ID: 19375161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeted cellular uptake and siRNA silencing by quantum-dot nanoparticles coated with β-cyclodextrin coupled to amino acids.
    Zhao MX; Li JM; Du L; Tan CP; Xia Q; Mao ZW; Ji LN
    Chemistry; 2011 Apr; 17(18):5171-9. PubMed ID: 21465588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of metal nanoparticle agglomeration, uptake, and interaction using high-illuminating system.
    Skebo JE; Grabinski CM; Schrand AM; Schlager JJ; Hussain SM
    Int J Toxicol; 2007; 26(2):135-41. PubMed ID: 17454253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mannosylated semiconductor quantum dots for the labeling of macrophages.
    Higuchi Y; Oka M; Kawakami S; Hashida M
    J Control Release; 2008 Jan; 125(2):131-6. PubMed ID: 18045722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line.
    Lunov O; Syrovets T; Loos C; Beil J; Delacher M; Tron K; Nienhaus GU; Musyanovych A; Mailänder V; Landfester K; Simmet T
    ACS Nano; 2011 Mar; 5(3):1657-69. PubMed ID: 21344890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of serum on the toxicity of manufactured nanoparticles.
    Clift MJ; Bhattacharjee S; Brown DM; Stone V
    Toxicol Lett; 2010 Oct; 198(3):358-65. PubMed ID: 20705123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative assessment of the comparative nanoparticle-uptake efficiency of a range of cell lines.
    dos Santos T; Varela J; Lynch I; Salvati A; Dawson KA
    Small; 2011 Dec; 7(23):3341-9. PubMed ID: 22009913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Small and stable sulfobetaine zwitterionic quantum dots for functional live-cell imaging.
    Muro E; Pons T; Lequeux N; Fragola A; Sanson N; Lenkei Z; Dubertret B
    J Am Chem Soc; 2010 Apr; 132(13):4556-7. PubMed ID: 20235547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advanced optical imaging reveals the dependence of particle geometry on interactions between CdSe quantum dots and immune cells.
    Aaron JS; Greene AC; Kotula PG; Bachand GD; Timlin JA
    Small; 2011 Feb; 7(3):334-41. PubMed ID: 21294262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the dynamic effect of cys-CdTe quantum dots toward cancer cells in vitro.
    Wu C; Shi L; Li Q; Jiang H; Selke M; Ba L; Wang X
    Chem Res Toxicol; 2010 Jan; 23(1):82-8. PubMed ID: 19961203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of cytocompatibility of surface-modified CdSe/ZnSe quantum dots for BALB/3T3 fibroblast cells.
    Mahto SK; Park C; Yoon TH; Rhee SW
    Toxicol In Vitro; 2010 Jun; 24(4):1070-7. PubMed ID: 20362659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bio-conjugated luminescent quantum dots of doped ZnS: a cyto-friendly system for targeted cancer imaging.
    Manzoor K; Johny S; Thomas D; Setua S; Menon D; Nair S
    Nanotechnology; 2009 Feb; 20(6):065102. PubMed ID: 19417370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.