These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 18708250)

  • 1. Aqueous solution behaviour and membrane disruptive activity of pH-responsive PEGylated pseudo-peptides and their intracellular distribution.
    Chen R; Yue Z; Eccleston ME; Slater NK
    Biomaterials; 2008 Nov; 29(32):4333-40. PubMed ID: 18708250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of cell membrane disruption by pH-responsive pseudo-peptides through grafting with hydrophilic side chains.
    Chen R; Yue Z; Eccleston ME; Williams S; Slater NK
    J Control Release; 2005 Nov; 108(1):63-72. PubMed ID: 16139914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of the pH-responsive properties of poly(L-lysine iso-phthalamide) grafted with a poly(ethylene glycol) analogue.
    Yue Z; Eccleston ME; Slater NK
    Biomaterials; 2005 Nov; 26(32):6357-66. PubMed ID: 15913772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of L-leucine graft content on aqueous solution behavior and membrane-lytic activity of a pH-responsive pseudopeptide.
    Chen R; Khormaee S; Eccleston ME; Slater NK
    Biomacromolecules; 2009 Sep; 10(9):2601-8. PubMed ID: 19642668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of hydrophobic amino acid grafts in the enhancement of membrane-disruptive activity of pH-responsive pseudo-peptides.
    Chen R; Khormaee S; Eccleston ME; Slater NK
    Biomaterials; 2009 Apr; 30(10):1954-61. PubMed ID: 19138797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of endosomal escape peptides on in vitro gene delivery of polyethylene glycol-based vehicles.
    Moore NM; Sheppard CL; Barbour TR; Sakiyama-Elbert SE
    J Gene Med; 2008 Oct; 10(10):1134-49. PubMed ID: 18642401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly(amidoamine) salt form: effect on pH-dependent membrane activity and polymer conformation in solution.
    Wan KW; Malgesini B; Verpilio I; Ferruti P; Griffiths PC; Paul A; Hann AC; Duncan R
    Biomacromolecules; 2004; 5(3):1102-9. PubMed ID: 15132705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of counterions in the membrane-disruptive properties of pH-sensitive lysine-based surfactants.
    Nogueira DR; Mitjans M; Infante MR; Vinardell MP
    Acta Biomater; 2011 Jul; 7(7):2846-56. PubMed ID: 21421083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pH-dependent disruption of erythrocyte membrane by amphiphilic poly(amino acid) nanoparticles.
    Akagi T; Kim H; Akashi M
    J Biomater Sci Polym Ed; 2010; 21(3):315-28. PubMed ID: 20178688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH-responsive pseudo-peptides for cell membrane disruption.
    Eccleston ME; Kuiper M; Gilchrist FM; Slater NK
    J Control Release; 2000 Nov; 69(2):297-307. PubMed ID: 11064136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of aromatic side-chains on the aqueous properties of pH-sensitive poly(L-lysine iso-phthalamide) derivatives.
    Khormaee S; Chen R; Park JK; Slater NK
    J Biomater Sci Polym Ed; 2010; 21(12):1573-88. PubMed ID: 20537242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and pH-dependent micellization of diblock copolymer mixtures.
    Van Butsele K; Sibret P; Fustin CA; Gohy JF; Passirani C; Benoit JP; Jérôme R; Jérôme C
    J Colloid Interface Sci; 2009 Jan; 329(2):235-43. PubMed ID: 18930246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. pH-responsive poly(styrene-alt-maleic anhydride) alkylamide copolymers for intracellular drug delivery.
    Henry SM; El-Sayed ME; Pirie CM; Hoffman AS; Stayton PS
    Biomacromolecules; 2006 Aug; 7(8):2407-14. PubMed ID: 16903689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pH-responsive endosomolytic pseudo-peptides for drug delivery to multicellular spheroids tumour models.
    Ho VH; Slater NK; Chen R
    Biomaterials; 2011 Apr; 32(11):2953-8. PubMed ID: 21272931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A dimethylmaleic acid-melittin-polylysine conjugate with reduced toxicity, pH-triggered endosomolytic activity and enhanced gene transfer potential.
    Meyer M; Zintchenko A; Ogris M; Wagner E
    J Gene Med; 2007 Sep; 9(9):797-805. PubMed ID: 17628028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimuli-responsive zwitterionic block copolypeptides: poly(N-isopropylacrylamide)-block-poly(lysine-co-glutamic acid).
    Li J; Wang T; Wu D; Zhang X; Yan J; Du S; Guo Y; Wang J; Zhang A
    Biomacromolecules; 2008 Oct; 9(10):2670-6. PubMed ID: 18759410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Well-defined cholesterol polymers with pH-controlled membrane switching activity.
    Sevimli S; Inci F; Zareie HM; Bulmus V
    Biomacromolecules; 2012 Oct; 13(10):3064-75. PubMed ID: 22917061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase transition behavior of novel pH-sensitive polyaspartamide derivatives grafted with 1-(3-aminopropyl)imidazole.
    Seo K; Kim D
    Macromol Biosci; 2006 Sep; 6(9):758-66. PubMed ID: 16967481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pH/potential-responsive large aggregates from the spontaneous self-assembly of a triblock copolymer in water.
    Hu J; Zhuang X; Huang L; Le L; Chen X; Wei Y; Jing X
    Langmuir; 2008 Dec; 24(23):13376-82. PubMed ID: 18980354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioinspired pH-responsive polymers for the intracellular delivery of biomolecular drugs.
    Murthy N; Campbell J; Fausto N; Hoffman AS; Stayton PS
    Bioconjug Chem; 2003; 14(2):412-9. PubMed ID: 12643752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.