BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 18708341)

  • 1. Size, shape and surface morphology of starch granules from Norway spruce needles revealed by transmission electron microscopy and atomic force microscopy: effects of elevated CO(2) concentration.
    Cabálková J; Pribyl J; Skládal P; Kulich P; Chmelík J
    Tree Physiol; 2008 Oct; 28(10):1593-9. PubMed ID: 18708341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photosynthetic traits around budbreak in pre-existing needles of Sakhalin spruce (Picea glehnii) seedlings grown under elevated CO2 concentration assessed by chlorophyll fluorescence measurements.
    Kitao M; Tobita H; Utsugi H; Komatsu M; Kitaoka S; Maruyama Y; Koike T
    Tree Physiol; 2012 Aug; 32(8):998-1007. PubMed ID: 22705862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Starch granule surface imaging using low-voltage scanning electron microscopy and atomic force microscopy.
    Baldwin PM; Davies MC; Melia CD
    Int J Biol Macromol; 1997 Aug; 21(1-2):103-7. PubMed ID: 9283023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrastructural analysis of buckwheat starch components using atomic force microscopy.
    Neethirajan S; Tsukamoto K; Kanahara H; Sugiyama S
    J Food Sci; 2012 Jan; 77(1):N2-7. PubMed ID: 22260119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualization of internal structure of banana starch granule through AFM.
    Peroni-Okita FH; Gunning AP; Kirby A; Simão RA; Soares CA; Cordenunsi BR
    Carbohydr Polym; 2015 Sep; 128():32-40. PubMed ID: 26005137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of rice starch granules in nanometre scale as revealed by atomic force microscopy.
    Ohtani T; Yoshino T; Ushiki T; Hagiwara S; Maekawa T
    J Electron Microsc (Tokyo); 2000; 49(3):487-9. PubMed ID: 11108039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Needle metabolome, freezing tolerance and gas exchange in Norway spruce seedlings exposed to elevated temperature and ozone concentration.
    Riikonen J; Kontunen-Soppela S; Ossipov V; Tervahauta A; Tuomainen M; Oksanen E; Vapaavuori E; Heinonen J; Kivimäenpää M
    Tree Physiol; 2012 Sep; 32(9):1102-12. PubMed ID: 22935538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic force microscopy of starch systems.
    Zhu F
    Crit Rev Food Sci Nutr; 2017 Sep; 57(14):3127-3144. PubMed ID: 26466740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon dioxide exchange of buds and developing shoots of boreal Norway spruce exposed to elevated or ambient CO2 concentration and temperature in whole-tree chambers.
    Hall M; Räntfors M; Slaney M; Linder S; Wallin G
    Tree Physiol; 2009 Apr; 29(4):467-81. PubMed ID: 19203983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Internal structure of the starch granule revealed by AFM.
    Baker AA; Miles MJ; Helbert W
    Carbohydr Res; 2001 Jan; 330(2):249-56. PubMed ID: 11217978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation into the intragranular structures of microcrystalline cellulose and pre-gelatinised starch.
    Laity P; Cassidy A; Skepper J; Jones B; Cameron R
    Eur J Pharm Biopharm; 2010 Feb; 74(2):377-87. PubMed ID: 19887108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potato starch granule nanostructure studied by high resolution non-contact AFM.
    Szymońska J; Krok F
    Int J Biol Macromol; 2003 Nov; 33(1-3):1-7. PubMed ID: 14599577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell structural changes in the mesophyll of Norway spruce needles by elevated ozone and elevated temperature in open-field exposure during cold acclimation.
    Kivimäenpää M; Riikonen J; Sutinen S; Holopainen T
    Tree Physiol; 2014 Apr; 34(4):389-403. PubMed ID: 24718738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mango starch degradation. I. A microscopic view of the granule during ripening.
    Simão RA; Silva AP; Peroni FH; do Nascimento JR; Louro RP; Lajolo FM; Cordenunsi BR
    J Agric Food Chem; 2008 Aug; 56(16):7410-5. PubMed ID: 18656941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of waxy and normal potato starch remaining granules after chemical surface gelatinization: pasting behavior and surface morphology.
    Huang J; Chen Z; Xu Y; Li H; Liu S; Yang D; Schols HA
    Carbohydr Polym; 2014 Feb; 102():1001-7. PubMed ID: 24507375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The new insight on ultrastructure of C-type starch granules revealed by acid hydrolysis.
    Wang S; Yu J; Jin F; Yu J
    Int J Biol Macromol; 2008 Aug; 43(2):216-20. PubMed ID: 18495241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the surface morphology of durum wheat starch granules using atomic force microscopy.
    Neethirajan S; Thomson DJ; Jayas DS; White ND
    Microsc Res Tech; 2008 Feb; 71(2):125-32. PubMed ID: 17937388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of Isomeric and Enantiomeric Fractions of Pinene in Essential Oil of
    Kamaitytė-Bukelskienė L; Ložienė K; Labokas J
    Molecules; 2021 Apr; 26(8):. PubMed ID: 33917721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel in situ atomic force microscopy imaging technique to probe surface morphological features of starch granules.
    Park H; Xu S; Seetharaman K
    Carbohydr Res; 2011 May; 346(6):847-53. PubMed ID: 21402375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interacting effects of elevated CO2 and weather variability on photosynthesis of mature boreal Norway spruce agree with biochemical model predictions.
    Uddling J; Wallin G
    Tree Physiol; 2012 Dec; 32(12):1509-21. PubMed ID: 23042768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.