BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 18708462)

  • 1. Hemoglobin dynamics in red blood cells: correlation to body temperature.
    Stadler AM; Digel I; Artmann GM; Embs JP; Zaccai G; Büldt G
    Biophys J; 2008 Dec; 95(11):5449-61. PubMed ID: 18708462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From powder to solution: hydration dependence of human hemoglobin dynamics correlated to body temperature.
    Stadler AM; Digel I; Embs JP; Unruh T; Tehei M; Zaccai G; Büldt G; Artmann GM
    Biophys J; 2009 Jun; 96(12):5073-81. PubMed ID: 19527667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macromolecular dynamics in red blood cells investigated using neutron spectroscopy.
    Stadler AM; van Eijck L; Demmel F; Artmann G
    J R Soc Interface; 2011 Apr; 8(57):590-600. PubMed ID: 20739313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hemoglobin senses body temperature.
    Artmann GM; Digel I; Zerlin KF; Maggakis-Kelemen Ch; Linder P; Porst D; Kayser P; Stadler AM; Dikta G; Temiz Artmann A
    Eur Biophys J; 2009 Jun; 38(5):589-600. PubMed ID: 19238378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Circular dichroism spectra of human hemoglobin reveal a reversible structural transition at body temperature.
    Artmann GM; Burns L; Canaves JM; Temiz-Artmann A; Schmid-Schönbein GW; Chien S; Maggakis-Kelemen C
    Eur Biophys J; 2004 Oct; 33(6):490-6. PubMed ID: 15045474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature transition of human hemoglobin at body temperature: effects of calcium.
    Kelemen C; Chien S; Artmann GM
    Biophys J; 2001 Jun; 80(6):2622-30. PubMed ID: 11371439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incoherent elastic and quasi-elastic neutron scattering investigation of hemoglobin dynamics.
    Caronna C; Natali F; Cupane A
    Biophys Chem; 2005 Aug; 116(3):219-25. PubMed ID: 15908102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural transition temperature of hemoglobins correlates with species' body temperature.
    Zerlin KF; Kasischke N; Digel I; Maggakis-Kelemen C; Temiz Artmann A; Porst D; Kayser P; Linder P; Artmann GM
    Eur Biophys J; 2007 Dec; 37(1):1-10. PubMed ID: 17390129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ligation-Dependent Picosecond Dynamics in Human Hemoglobin As Revealed by Quasielastic Neutron Scattering.
    Fujiwara S; Chatake T; Matsuo T; Kono F; Tominaga T; Shibata K; Sato-Tomita A; Shibayama N
    J Phys Chem B; 2017 Aug; 121(34):8069-8077. PubMed ID: 28777572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Body temperature-related structural transitions of monotremal and human hemoglobin.
    Digel I; Maggakis-Kelemen Ch; Zerlin KF; Linder P; Kasischke N; Kayser P; Porst D; Temiz Artmann A; Artmann GM
    Biophys J; 2006 Oct; 91(8):3014-21. PubMed ID: 16844747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specific cellular water dynamics observed in vivo by neutron scattering and NMR.
    Jasnin M; Stadler A; Tehei M; Zaccai G
    Phys Chem Chem Phys; 2010 Sep; 12(35):10154-60. PubMed ID: 20714607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Picosecond internal dynamics of lysozyme as affected by thermal unfolding in nonaqueous environment.
    De Francesco A; Marconi M; Cinelli S; Onori G; Paciaroni A
    Biophys J; 2004 Jan; 86(1 Pt 1):480-7. PubMed ID: 14695292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microscopic diffusion and hydrodynamic interactions of hemoglobin in red blood cells.
    Doster W; Longeville S
    Biophys J; 2007 Aug; 93(4):1360-8. PubMed ID: 17513357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamical changes of hemoglobin and its surrounding water during thermal denaturation as studied by quasielastic neutron scattering and temperature modulated differential scanning calorimetry.
    Jansson H; Swenson J
    J Chem Phys; 2008 Jun; 128(24):245104. PubMed ID: 18601388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Picosecond dynamics in haemoglobin from different species: a quasielastic neutron scattering study.
    Stadler AM; Garvey CJ; Embs JP; Koza MM; Unruh T; Artmann G; Zaccai G
    Biochim Biophys Acta; 2014 Oct; 1840(10):2989-99. PubMed ID: 24954308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of C-phycocyanin in various deuterated trehalose/water environments measured by quasielastic and elastic neutron scattering.
    Köper I; Combet S; Petry W; Bellissent-Funel MC
    Eur Biophys J; 2008 Jul; 37(6):739-48. PubMed ID: 18185929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal fluctuations of haemoglobin from different species: adaptation to temperature via conformational dynamics.
    Stadler AM; Garvey CJ; Bocahut A; Sacquin-Mora S; Digel I; Schneider GJ; Natali F; Artmann GM; Zaccai G
    J R Soc Interface; 2012 Nov; 9(76):2845-55. PubMed ID: 22696485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hemoglobin diffusion and the dynamics of oxygen capture by red blood cells.
    Longeville S; Stingaciu LR
    Sci Rep; 2017 Sep; 7(1):10448. PubMed ID: 28874711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single red blood cell analysis reveals elevated hemoglobin in poikilocytes.
    Tsui SM; Ahmed R; Amjad N; Ahmed I; Yang J; Manno FA; Barman I; Shih WC; Lau C
    J Biomed Opt; 2020 Jan; 25(1):1-13. PubMed ID: 31975576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic transition associated with the thermal denaturation of a small Beta protein.
    Russo D; Pérez J; Zanotti JM; Desmadril M; Durand D
    Biophys J; 2002 Nov; 83(5):2792-800. PubMed ID: 12414711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.