These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 18708682)

  • 1. Tibiofemoral joint kinetics during squatting with increasing external load.
    Sahli S; Rebai H; Elleuch MH; Tabka Z; Poumarat G
    J Sport Rehabil; 2008 Aug; 17(3):300-15. PubMed ID: 18708682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Knee flexion with quadriceps cocontraction: A new therapeutic exercise for the early stage of ACL rehabilitation.
    Biscarini A; Contemori S; Busti D; Botti FM; Pettorossi VE
    J Biomech; 2016 Dec; 49(16):3855-3860. PubMed ID: 28573973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of intersegmental tibiofemoral joint forces and muscle activity during various closed kinetic chain exercises.
    Stuart MJ; Meglan DA; Lutz GE; Growney ES; An KN
    Am J Sports Med; 1996; 24(6):792-9. PubMed ID: 8947402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective contribution of each hamstring muscle to anterior cruciate ligament protection and tibiofemoral joint stability in leg-extension exercise: a simulation study.
    Biscarini A; Botti FM; Pettorossi VE
    Eur J Appl Physiol; 2013 Sep; 113(9):2263-73. PubMed ID: 23670482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuromuscular disorder in response to anterior cruciate ligament creep.
    Chu D; LeBlanc R; D'Ambrosia P; D'Ambrosia R; Baratta RV; Solomonow M
    Clin Biomech (Bristol, Avon); 2003 Mar; 18(3):222-30. PubMed ID: 12620785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The importance of quadriceps and hamstring muscle loading on knee kinematics and in-situ forces in the ACL.
    Li G; Rudy TW; Sakane M; Kanamori A; Ma CB; Woo SL
    J Biomech; 1999 Apr; 32(4):395-400. PubMed ID: 10213029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of tibiofemoral joint forces and electromyographic activity during open and closed kinetic chain exercises.
    Wilk KE; Escamilla RF; Fleisig GS; Barrentine SW; Andrews JR; Boyd ML
    Am J Sports Med; 1996; 24(4):518-27. PubMed ID: 8827313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increasing quadriceps loads affect the lengths of the ligaments and the kinematics of the knee.
    Hsieh YF; Draganich LF
    J Biomech Eng; 1998 Dec; 120(6):750-6. PubMed ID: 10412459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of tibiofemoral joint kinematics on patellofemoral contact pressures under simulated muscle loads.
    Li G; DeFrate LE; Zayontz S; Park SE; Gill TJ
    J Orthop Res; 2004 Jul; 22(4):801-6. PubMed ID: 15183437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional muscle synergies to support the knee against moment specific loads while weight bearing.
    Flaxman TE; Shourijeh MS; Smale KB; Alkjær T; Simonsen EB; Krogsgaard MR; Benoit DL
    J Electromyogr Kinesiol; 2021 Feb; 56():102506. PubMed ID: 33271472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predictors of proximal tibia anterior shear force during a vertical stop-jump.
    Sell TC; Ferris CM; Abt JP; Tsai YS; Myers JB; Fu FH; Lephart SM
    J Orthop Res; 2007 Dec; 25(12):1589-97. PubMed ID: 17626264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-knee-spanning muscles contribute to tibiofemoral shear as well as valgus and rotational joint reaction moments during unanticipated sidestep cutting.
    Maniar N; Schache AG; Sritharan P; Opar DA
    Sci Rep; 2018 Feb; 8(1):2501. PubMed ID: 29410451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tibiofemoral joint forces during maximal isokinetic eccentric and concentric efforts of the knee flexors.
    Kellis E
    Clin Biomech (Bristol, Avon); 2001 Mar; 16(3):229-36. PubMed ID: 11240058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanics of the knee. A study of joint and muscle load with clinical applications.
    Nisell R
    Acta Orthop Scand Suppl; 1985; 216():1-42. PubMed ID: 3865491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Associations between lower limb muscle activation strategies and resultant multi-planar knee kinetics during single leg landings.
    Brown TN; McLean SG; Palmieri-Smith RM
    J Sci Med Sport; 2014 Jul; 17(4):408-13. PubMed ID: 23849907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ forces in the human posterior cruciate ligament in response to muscle loads: a cadaveric study.
    Höher J; Vogrin TM; Woo SL; Carlin GJ; Arøen A; Harner CD
    J Orthop Res; 1999 Sep; 17(5):763-8. PubMed ID: 10569489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A biomechanical investigation of a single-limb squat: implications for lower extremity rehabilitation exercise.
    Richards J; Thewlis D; Selfe J; Cunningham A; Hayes C
    J Athl Train; 2008; 43(5):477-82. PubMed ID: 18833310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quadriceps EMG/force relationship in knee extension and leg press.
    Alkner BA; Tesch PA; Berg HE
    Med Sci Sports Exerc; 2000 Feb; 32(2):459-63. PubMed ID: 10694132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contributions of the soleus and gastrocnemius muscles to the anterior cruciate ligament loading during single-leg landing.
    Mokhtarzadeh H; Yeow CH; Hong Goh JC; Oetomo D; Malekipour F; Lee PV
    J Biomech; 2013 Jul; 46(11):1913-20. PubMed ID: 23731572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antagonist muscle coactivation during isokinetic knee extension.
    Aagaard P; Simonsen EB; Andersen JL; Magnusson SP; Bojsen-Møller F; Dyhre-Poulsen P
    Scand J Med Sci Sports; 2000 Apr; 10(2):58-67. PubMed ID: 10755275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.