BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 18708745)

  • 1. Modulation of neuronal voltage-activated calcium and sodium channels by polyamines and pH.
    Chen W; Harnett MT; Smith SM
    Channels (Austin); 2007; 1(4):281-90. PubMed ID: 18708745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanism of inward rectification of potassium channels: "long-pore plugging" by cytoplasmic polyamines.
    Lopatin AN; Makhina EN; Nichols CG
    J Gen Physiol; 1995 Nov; 106(5):923-55. PubMed ID: 8648298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles of tetrodotoxin (TTX)-sensitive Na+ current, TTX-resistant Na+ current, and Ca2+ current in the action potentials of nociceptive sensory neurons.
    Blair NT; Bean BP
    J Neurosci; 2002 Dec; 22(23):10277-90. PubMed ID: 12451128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca2+ and Na+ permeability of high-threshold Ca2+ channels and their voltage-dependent block by Mg2+ ions in chick sensory neurones.
    Carbone E; Lux HD; Carabelli V; Aicardi G; Zucker H
    J Physiol; 1997 Oct; 504 ( Pt 1)(Pt 1):1-15. PubMed ID: 9350613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acid modulation of tetrodotoxin-sensitive Na
    Nakamura M; Kim DY; Jang IS
    Brain Res; 2016 Nov; 1651():44-52. PubMed ID: 27639809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of extracellular pH on voltage-gated Na+, K+ and Ca2+ currents in isolated rat CA1 neurons.
    Tombaugh GC; Somjen GG
    J Physiol; 1996 Jun; 493 ( Pt 3)(Pt 3):719-32. PubMed ID: 8799894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low concentrations of tetrodotoxin interact with tetrodotoxin-resistant voltage-gated sodium channels.
    Farmer C; Smith K; Docherty R
    Br J Pharmacol; 2008 Sep; 155(1):34-43. PubMed ID: 18552876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ring of negative charge in BK channels facilitates block by intracellular Mg2+ and polyamines through electrostatics.
    Zhang Y; Niu X; Brelidze TI; Magleby KL
    J Gen Physiol; 2006 Aug; 128(2):185-202. PubMed ID: 16847096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The neuroleptic drug, fluphenazine, blocks neuronal voltage-gated sodium channels.
    Zhou X; Dong XW; Priestley T
    Brain Res; 2006 Aug; 1106(1):72-81. PubMed ID: 16839522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A-887826 is a structurally novel, potent and voltage-dependent Na(v)1.8 sodium channel blocker that attenuates neuropathic tactile allodynia in rats.
    Zhang XF; Shieh CC; Chapman ML; Matulenko MA; Hakeem AH; Atkinson RN; Kort ME; Marron BE; Joshi S; Honore P; Faltynek CR; Krafte DS; Jarvis MF
    Neuropharmacology; 2010 Sep; 59(3):201-7. PubMed ID: 20566409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyamines and the calcium paradox in rat hearts.
    Busselen P
    J Mol Cell Cardiol; 1991 Mar; 23(3):237-47. PubMed ID: 1908906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional tetrodotoxin-resistant Na(+) channels are expressed presynaptically in rat dorsal root ganglia neurons.
    Medvedeva YV; Kim MS; Schnizler K; Usachev YM
    Neuroscience; 2009 Mar; 159(2):559-69. PubMed ID: 19162133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of polyamines on voltage-activated calcium channels in guinea-pig intestinal smooth muscle.
    Gomez M; Hellstrand P
    Pflugers Arch; 1995 Aug; 430(4):501-7. PubMed ID: 7491276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface potential reflected in both gating and permeation mechanisms of sodium and calcium channels of the tunicate egg cell membrane.
    Ohmori H; Yoshii M
    J Physiol; 1977 May; 267(2):429-63. PubMed ID: 17734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spermine and related polyamines produce a voltage-dependent reduction of N-methyl-D-aspartate receptor single-channel conductance.
    Rock DM; MacDonald RL
    Mol Pharmacol; 1992 Jul; 42(1):157-64. PubMed ID: 1378923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of TTX-sensitive voltage-dependent Na+ channels by β-bungarotoxin in rat cerebellar neurons.
    Guo D; Xiang W; Seebahn A; Becker CM; Strauss O
    BMC Neurosci; 2012 Mar; 13():36. PubMed ID: 22458914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracellular spermine exacerbates ischemic neuronal injury through sensitization of ASIC1a channels to extracellular acidosis.
    Duan B; Wang YZ; Yang T; Chu XP; Yu Y; Huang Y; Cao H; Hansen J; Simon RP; Zhu MX; Xiong ZG; Xu TL
    J Neurosci; 2011 Feb; 31(6):2101-12. PubMed ID: 21307247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Propranolol modulation of tetrodotoxin-resistant Na
    Nakamura M; Jang IS
    Eur J Pharmacol; 2021 Nov; 910():174449. PubMed ID: 34454925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties of wild-type and fluorescent protein-tagged mouse tetrodotoxin-resistant sodium channel (Na V 1.8) heterologously expressed in rat sympathetic neurons.
    Schofield GG; Puhl HL; Ikeda SR
    J Neurophysiol; 2008 Apr; 99(4):1917-27. PubMed ID: 18272876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low voltage-activated calcium and fast tetrodotoxin-resistant sodium currents define subtypes of cholinergic and noncholinergic neurons in rat basal forebrain.
    Han SH; Murchison D; Griffith WH
    Brain Res Mol Brain Res; 2005 Apr; 134(2):226-38. PubMed ID: 15836920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.