These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 18709061)

  • 1. Improvement of amplified spontaneous emission by encapsulating green fluorescent dye in inverted-opal titania photonic crystals.
    Zhang D; Wang Y; Cao Y; Ma D
    Appl Opt; 2008 Mar; 47(9):1177-81. PubMed ID: 18709061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved amplified spontaneous emission by doping of green fluorescent dye C545T in red fluorescent dye DCJTB:PS polymer films.
    Zhang D; Ma D
    Appl Opt; 2007 May; 46(15):2996-3000. PubMed ID: 17514249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of lasing in an inverted-opal titania photonic crystal cavity as an organic solid-state dye-doped laser.
    Zhang D; Chen S; Jiang M; Ye L
    Appl Opt; 2014 Nov; 53(32):7624-8. PubMed ID: 25402981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amplified spontaneous emission and gain from optically pumped films of dye-doped polymers.
    Lu W; Zhong B; Ma D
    Appl Opt; 2004 Sep; 43(26):5074-8. PubMed ID: 15468709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strong Photonic-Band-Gap Effect on the Spontaneous Emission in 3D Lead Halide Perovskite Photonic Crystals.
    Zhou X; Li M; Wang K; Li H; Li Y; Li C; Yan Y; Zhao Y; Song Y
    Chemphyschem; 2018 Aug; 19(16):2101-2106. PubMed ID: 29575398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amplified spontaneous emission from DCJTB encapsulated in mesostructured composite silica SBA-15.
    Zhang D; Duan Z; Wang Y; Zhang P; Chen S
    Appl Opt; 2016 Jun; 55(17):4736-40. PubMed ID: 27409033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible Shift from Excitonic to Excimer Emission in Fluorescent Organic Light-Emitting Diodes: Dependence on Deposition Parameters and Electrical Bias.
    Soman A; Sajeev AK; Rajeev K; K N NU
    ACS Omega; 2020 Jan; 5(3):1698-1707. PubMed ID: 32010844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rutile TiO2 inverse opal with photonic bandgap in the UV-visible range.
    Li Y; Piret F; LĂ©onard T; Su BL
    J Colloid Interface Sci; 2010 Aug; 348(1):43-8. PubMed ID: 20466381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amplified spontaneous emission from opal photonic crystals engineered with structural defects.
    Di Stasio F; Berti L; Burger M; Marabelli F; Gardin S; Dainese T; Signorini R; Bozio R; Comoretto D
    Phys Chem Chem Phys; 2009 Dec; 11(48):11515-9. PubMed ID: 20024423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement of amplified spontaneous emission performance by doping tris(8-hydroxyquinoline) aluminum (Alq3) in dye-doped polymer thin films.
    Lu W; You H; Fang J; Ma D
    Appl Opt; 2007 Apr; 46(12):2320-4. PubMed ID: 17415402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increasing the conversion efficiency of dye-sensitized TiO2 photoelectrochemical cells by coupling to photonic crystals.
    Halaoui LI; Abrams NM; Mallouk TE
    J Phys Chem B; 2005 Apr; 109(13):6334-42. PubMed ID: 16851706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced amplified spontaneous emission in a quantum dot-doped polymer-dispersed liquid crystal.
    Cao M; Zhang Y; Song X; Che Y; Zhang H; Yan C; Dai H; Liu G; Zhang G; Yao J
    Nanotechnology; 2016 Jul; 27(26):26LT01. PubMed ID: 27196786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of disorder on the optically amplified photocatalytic efficiency of titania inverse opals.
    Chen JI; Freymann Gv; Kitaev V; Ozin GA
    J Am Chem Soc; 2007 Feb; 129(5):1196-202. PubMed ID: 17263401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition of lasing modes in polymeric opal photonic crystal resonating cavity.
    Shi LT; Zheng ML; Jin F; Dong XZ; Chen WQ; Zhao ZS; Duan XM
    Appl Opt; 2016 Jun; 55(17):4759-62. PubMed ID: 27409036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermally Driven Photonic Actuator Based on Silica Opal Photonic Crystal with Liquid Crystal Elastomer.
    Xing H; Li J; Shi Y; Guo J; Wei J
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9440-5. PubMed ID: 26996608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical properties of inverted opal photonic band gap crystals with stacking disorder.
    Wang ZL; Chan CT; Zhang WY; Chen Z; Ming NB; Sheng P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 2):016612. PubMed ID: 12636630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals.
    Nishimura S; Abrams N; Lewis BA; Halaoui LI; Mallouk TE; Benkstein KD; van de Lagemaat J; Frank AJ
    J Am Chem Soc; 2003 May; 125(20):6306-10. PubMed ID: 12785864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heavily Doped, Charge-Balanced Fluorescent Organic Light-Emitting Diodes from Direct Charge Trapping of Dopants in Emission Layer.
    Rhee SH; Kim SH; Kim HS; Shin JY; Bastola J; Ryu SY
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16750-9. PubMed ID: 26151550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultralow Threshold One-Photon- and Two-Photon-Pumped Optical Gain Media of Blue-Emitting Colloidal Quantum Dot Films.
    Guzelturk B; Kelestemur Y; Akgul MZ; Sharma VK; Demir HV
    J Phys Chem Lett; 2014 Jul; 5(13):2214-8. PubMed ID: 26279536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mono- to few-layered graphene oxide embedded randomness assisted microcavity amplified spontaneous emission source.
    Das P; Maiti R; Barman PK; Ray SK; Shivakiran BB
    Nanotechnology; 2016 Feb; 27(5):055201. PubMed ID: 26670725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.