These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 18709072)

  • 1. Dynamics of interacting Brownian particles in concentrated colloidal suspensions.
    Xia H; Ishii K; Iwaii T; Li H; Yang B
    Appl Opt; 2008 Mar; 47(9):1257-62. PubMed ID: 18709072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of suspensions of hydrodynamically structured particles: analytic theory and applications to experiments.
    Riest J; Eckert T; Richtering W; Nägele G
    Soft Matter; 2015 Apr; 11(14):2821-43. PubMed ID: 25707362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aggregation in colloidal suspensions: effect of colloidal forces and hydrodynamic interactions.
    Kovalchuk NM; Starov VM
    Adv Colloid Interface Sci; 2012 Nov; 179-182():99-106. PubMed ID: 21645876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrodynamic measurement of Brownian particles at a liquid-solid interface by low-coherence dynamic light scattering.
    Ishii K; Iwai T; Xia H
    Opt Express; 2010 Mar; 18(7):7390-6. PubMed ID: 20389761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aggregation in colloidal suspensions: evaluation of the role of hydrodynamic interactions by means of numerical simulations.
    Tomilov A; Videcoq A; Cerbelaud M; Piechowiak MA; Chartier T; Ala-Nissila T; Bochicchio D; Ferrando R
    J Phys Chem B; 2013 Nov; 117(46):14509-17. PubMed ID: 24143912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-time self-diffusion of charged colloidal particles: electrokinetic and hydrodynamic interaction effects.
    McPhie MG; Nägele G
    J Chem Phys; 2007 Jul; 127(3):034906. PubMed ID: 17655462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short- and long-time diffusion and dynamic scaling in suspensions of charged colloidal particles.
    Banchio AJ; Heinen M; Holmqvist P; Nägele G
    J Chem Phys; 2018 Apr; 148(13):134902. PubMed ID: 29626910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rotational and translational self-diffusion in concentrated suspensions of permeable particles.
    Abade GC; Cichocki B; Ekiel-Jezewska ML; Nägele G; Wajnryb E
    J Chem Phys; 2011 Jun; 134(24):244903. PubMed ID: 21721660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and short-time dynamics in concentrated suspensions of charged colloids.
    Westermeier F; Fischer B; Roseker W; Grübel G; ägele G; Heinen M
    J Chem Phys; 2012 Sep; 137(11):114504. PubMed ID: 22998268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using dynamic low-coherence interferometry to image Brownian motion within highly scattering media.
    Boas DA; Bizheva KK; Siegel AM
    Opt Lett; 1998 Mar; 23(5):319-21. PubMed ID: 18084498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discontinuous shear thickening in Brownian suspensions by dynamic simulation.
    Mari R; Seto R; Morris JF; Denn MM
    Proc Natl Acad Sci U S A; 2015 Dec; 112(50):15326-30. PubMed ID: 26621744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of colloidal particle Brownian aggregation by low-coherence fiber optic dynamic light scattering.
    Xia H; Pang RY; Zhang R; Miao CX; Wu XY; Hou XS; Zhong C
    J Colloid Interface Sci; 2012 Jun; 376(1):322-6. PubMed ID: 22446146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Percus-Yevick description of the microstructure of short-range interacting metastable colloidal suspensions.
    Muratov A; Moussaïd A; Narayanan T; Kats EI
    J Chem Phys; 2009 Aug; 131(5):054902. PubMed ID: 19673583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Pulsed Field Gradient NMR Technique for the Determination of the Structure of Suspensions of Non-Brownian Particles with Application to Packings of Spheres.
    Talini L; Leblond J; Feuillebois F
    J Magn Reson; 1998 Jun; 132(2):287-97. PubMed ID: 9632555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colloidal dynamics: influence of diffusion, inertia and colloidal forces on cluster formation.
    Kovalchuk N; Starov V; Langston P; Hilal N; Zhdanov V
    J Colloid Interface Sci; 2008 Sep; 325(2):377-85. PubMed ID: 18619605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and short-time diffusion of concentrated suspensions consisting of silicone-stabilised PMMA particles: a quantitative analysis taking polydispersity effects into account.
    Diaz Maier J; Wagner J
    Soft Matter; 2024 Feb; 20(6):1309-1319. PubMed ID: 38240651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tracer diffusion in colloidal suspensions under dilute and crowded conditions with hydrodynamic interactions.
    Tomilov A; Videcoq A; Chartier T; Ala-Nissilä T; Vattulainen I
    J Chem Phys; 2012 Jul; 137(1):014503. PubMed ID: 22779661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of claylike colloids.
    Hecht M; Harting J; Ihle T; Herrmann HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 1):011408. PubMed ID: 16089962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of colloidal suspensions of ferromagnetic particles in plane Couette flow: comparison of approximate solutions with Brownian dynamics simulations.
    Ilg P; Kröger M; Hess S; Zubarev AY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 1):061401. PubMed ID: 16241220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short-time transport properties of bidisperse suspensions and porous media: a Stokesian dynamics study.
    Wang M; Brady JF
    J Chem Phys; 2015 Mar; 142(9):094901. PubMed ID: 25747100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.