These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 18709132)

  • 1. Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm.
    Bandyopadhyay S; Canning J; Stevenson M; Cook K
    Opt Lett; 2008 Aug; 33(16):1917-9. PubMed ID: 18709132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrahigh-Temperature Regeneration of Long Period Gratings (LPGs) in Boron-Codoped Germanosilicate Optical Fibre.
    Liu W; Cook K; Canning J
    Sensors (Basel); 2015 Aug; 15(8):20659-77. PubMed ID: 26307991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal decay of fiber Bragg gratings of positive and negative index changes formed at 193 nm in a boron-codoped germanosilicate fiber.
    Dong L; Liu WF
    Appl Opt; 1997 Nov; 36(31):8222-6. PubMed ID: 18264360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced type IIA gratings for high-temperature operation.
    Groothoff N; Canning J
    Opt Lett; 2004 Oct; 29(20):2360-2. PubMed ID: 15532267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of high-reflectivity superimposed multiple-fiber Bragg gratings with unequal wavelength spacing.
    Arigiris A; Konstantaki M; Ikiades A; Chronis D; Florias P; Kallimani K; Pagiatakis G
    Opt Lett; 2002 Aug; 27(15):1306-8. PubMed ID: 18026432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of refractive-index variation with temperature by use of long-period fiber gratings.
    Kim YJ; Paek UC; Lee BH
    Opt Lett; 2002 Aug; 27(15):1297-9. PubMed ID: 18026429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study of regenerated gratings produced in germanosilicate fibers by high temperature annealing.
    Bandyopadhyay S; Canning J; Biswas P; Stevenson M; Dasgupta K
    Opt Express; 2011 Jan; 19(2):1198-206. PubMed ID: 21263661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bragg grating fabrication in germanosilicate fibers by use of near-UV light: a new pathway for refractive-index changes.
    Starodubov DS; Grubsky V; Feinberg J; Kobrin B; Juma S
    Opt Lett; 1997 Jul; 22(14):1086-8. PubMed ID: 18185759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strain measurement at temperatures up to 800°C using regenerated gratings produced in the highGe-doped and B/Ge co-doped fibers.
    Zhang P; Yang H; Wang Y; Liu H; Lim KS; Gunawardena DS; Ahmad H
    Appl Opt; 2017 Aug; 56(22):6073-6078. PubMed ID: 29047797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-temperature sustainability of strong fiber Bragg gratings written into Sb-Ge-codoped photosensitive fiber: decay mechanisms involved during annealing.
    Shen Y; He J; Sun T; Grattan KT
    Opt Lett; 2004 Mar; 29(6):554-6. PubMed ID: 15035468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of thermal decay and prediction of operational lifetime for a type I boron-germanium codoped fiber Bragg grating.
    Pal S; Mandal J; Sun T; Grattan KT
    Appl Opt; 2003 Apr; 42(12):2188-97. PubMed ID: 12716161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Spectral repeatability of regenerated fiber gratings prepared by high temperature annealing].
    Wang T; He DW; Wang YS; Quan Y; Wang PF; Yin ZL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 May; 33(5):1411-4. PubMed ID: 23905363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Post-hydrogen-loaded draw tower fiber Bragg gratings and their thermal regeneration.
    Lindner E; Canning J; Chojetzki C; Brückner S; Becker M; Rothhardt M; Bartelt H
    Appl Opt; 2011 Jun; 50(17):2519-22. PubMed ID: 21673753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of two annealing processes on the thermal regeneration of fiber Bragg gratings in hydrogenated standard optical fibers.
    Lu K; Yang H; Lim KS; Ahmad H; Zhang P; Tian Q; Ding X; Qiao X
    Appl Opt; 2018 Aug; 57(24):6971-6975. PubMed ID: 30129586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature sensing through long period fiber gratings mechanically induced on tapered optical fibers.
    Pulido-Navarro MG; Escamilla-Ambrosio PJ; Marrujo-García S; Álvarez-Chávez JA; Martínez-Piñón F
    Appl Opt; 2017 Jul; 56(19):5526-5531. PubMed ID: 29047511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abnormal spectral evolution of fiber Bragg gratings in hydrogenated fibers.
    Liu Y; Williams JA; Zhang L; Bennion I
    Opt Lett; 2002 Apr; 27(8):586-8. PubMed ID: 18007870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of isochronal and isothermal decays of bragg gratings written through continuous-wave exposure of an unloaded germanosilicate fiber.
    Razafimahatratra D; Niay P; Douay M; Poumellec B; Riant I
    Appl Opt; 2000 Apr; 39(12):1924-33. PubMed ID: 18345089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bulk regeneration of optical fiber Bragg gratings.
    Shao LY; Wang T; Canning J; Cook K; Tam HY
    Appl Opt; 2012 Oct; 51(30):7165-9. PubMed ID: 23089767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regenerated gratings in air-hole microstructured fibers for high-temperature pressure sensing.
    Chen T; Chen R; Jewart C; Zhang B; Cook K; Canning J; Chen KP
    Opt Lett; 2011 Sep; 36(18):3542-4. PubMed ID: 21931384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-temperature stable gratings in germanosilicate planar waveguides.
    Aslund M; Canning J; Bazylenko M
    Opt Lett; 1998 Dec; 23(24):1898-900. PubMed ID: 18091948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.