BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 18709186)

  • 1. Review on the theory of moving reaction boundary, electromigration reaction methods and applications in isoelectric focusing and sample pre-concentration.
    Cao CX; Fan LY; Zhang W
    Analyst; 2008 Sep; 133(9):1139-57. PubMed ID: 18709186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer simulation on a continuous moving chelation boundary in ethylenediaminetetraacetic acid-based sample sweeping in capillary electrophoresis.
    Jin J; Shao J; Li S; Zhang W; Fan LY; Cao CX
    J Chromatogr A; 2009 Jun; 1216(24):4913-22. PubMed ID: 19439312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical and experimental investigations on relationship between Kohlrausch regulating function/inequality and moving reaction boundary in electrophoresis.
    Zhang W; Jin J; Fan LY; Li S; Shao J; Cao CX
    J Sep Sci; 2009 Jun; 32(12):2123-31. PubMed ID: 19479762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative investigations on moving chelation boundary within a continuous EDTA-based sample sweeping system in capillary electrophoresis.
    Fan L; Li C; Zhang W; Cao C; Zhou P; Deng Z
    Electrophoresis; 2008 Oct; 29(19):3989-98. PubMed ID: 18958891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on mechanism of stacking of zwitterion in highly saline biologic sample by transient moving reaction boundary created by formic buffer and conjugate base in capillary electrophoresis.
    Zhu W; Zhang W; Fan LY; Shao J; Li S; Chen JL; Cao CX
    Talanta; 2009 May; 78(3):1194-200. PubMed ID: 19269493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recursion approach for moving neutralization boundary formed on IPG strips. Part I: With strong alkali rehydration buffer.
    Liang H; Chen Y; Tian LJ; Zhang L
    Electrophoresis; 2009 Sep; 30(18):3134-43. PubMed ID: 19764061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative study on sample stacking by moving reaction boundary formed with weak acid and weak or strong base in capillary electrophoresis: II. Experiments.
    Zhang W; Fan L; Shao J; Li S; Li S; Cao C
    Talanta; 2011 Apr; 84(2):547-57. PubMed ID: 21376986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ionic strength effects on electrophoretic focusing and separations.
    Bahga SS; Bercovici M; Santiago JG
    Electrophoresis; 2010 Mar; 31(5):910-9. PubMed ID: 20191554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel isotachophoresis of cobalt and copper complexes by metal ion substitution reaction in a continuous moving chelation boundary.
    Zhang W; Chen JF; Fan LY; Cao CX; Ren JC; Li S; Shao J
    Analyst; 2010 Jan; 135(1):140-8. PubMed ID: 20024194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mathematical model and computer simulation on moving precipitate boundary electrophoresis for offline sample pre- concentration of heavy metal ion.
    Chang J; Zhang J; Wang HY; Fan LY; Fan YP; Li S; Cao CX
    Talanta; 2013 Jan; 103():314-21. PubMed ID: 23200393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study on sample stacking by moving reaction boundary formed with weak acid and weak or strong alkali in capillary electrophoresis: I. Theory.
    Cao C; Zhang W; Fan L; Shao J; Li S
    Talanta; 2011 May; 84(3):651-8. PubMed ID: 21482263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visual offline sample stacking via moving neutralization boundary electrophoresis for analysis of heavy metal ion.
    Fan Y; Li S; Fan L; Cao C
    Talanta; 2012 Jun; 95():42-9. PubMed ID: 22748554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling of electroosmotic and electrophoretic mobilization in capillary and microchip isoelectric focusing.
    Thormann W; Caslavska J; Mosher RA
    J Chromatogr A; 2007 Jul; 1155(2):154-63. PubMed ID: 17307189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new electrophoretic focusing principle: focusing of nonamphoteric weak ionogenic analytes using inverse electromigration dispersion profiles.
    Gebauer P; Malá Z; Bocek P
    Electrophoresis; 2010 Mar; 31(5):886-92. PubMed ID: 20191550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isoelectric focusing sample injection for capillary electrophoresis of proteins.
    Wu XZ; Zhang LH; Onoda K
    Electrophoresis; 2005 Feb; 26(3):563-70. PubMed ID: 15690458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experiments on moving interaction boundaries and their characteristics of focusing and probing of both guest and host target molecules.
    Fan L; Yan W; Cao C; Zhang W; Chen Q
    Anal Chim Acta; 2009 Sep; 650(1):111-7. PubMed ID: 19720181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new type of migrating zone boundary in electrophoresis: 3. The hybrid boundary and stacking criteria.
    Gebauer P; Malá Z; Bocek P
    Electrophoresis; 2006 Mar; 27(5-6):962-7. PubMed ID: 16470780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Properties of moving boundaries in electrophoretic systems with multivalent weak electrolytes: principles of non-Kohlrausch concentration adjustment.
    Malá Z; Gebauer P
    Electrophoresis; 2006 Dec; 27(23):4601-9. PubMed ID: 17091467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sample enrichment techniques in capillary electrophoresis: focus on peptides and proteins.
    Monton MR; Terabe S
    J Chromatogr B Analyt Technol Biomed Life Sci; 2006 Sep; 841(1-2):88-95. PubMed ID: 16716769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. System effects in sample self-stacking CZE: single analyte peak splitting of salt-containing samples.
    Malá Z; Gebauer P; Bocek P
    Electrophoresis; 2009 Mar; 30(5):866-74. PubMed ID: 19197903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.