BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

894 related articles for article (PubMed ID: 18709926)

  • 1. Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: an ecosustainable approach.
    Rai PK
    Int J Phytoremediation; 2008; 10(2):131-58. PubMed ID: 18709926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heavy metal pollution in lentic ecosystem of sub-tropical industrial region and its phytoremediation.
    Rai PK
    Int J Phytoremediation; 2010 Mar; 12(3):226-42. PubMed ID: 20734618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selection of wild macrophytes for use in constructed wetlands for phytoremediation of contaminant mixtures.
    Guittonny-Philippe A; Petit ME; Masotti V; Monnier Y; Malleret L; Coulomb B; Combroux I; Baumberger T; Viglione J; Laffont-Schwob I
    J Environ Manage; 2015 Jan; 147():108-23. PubMed ID: 25262393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heavy metals in water, sediments and wetland plants in an aquatic ecosystem of tropical industrial region, India.
    Rai PK
    Environ Monit Assess; 2009 Nov; 158(1-4):433-57. PubMed ID: 18998227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heavy metal pollution induced due to coal mining effluent on surrounding aquatic ecosystem and its management through naturally occurring aquatic macrophytes.
    Mishra VK; Upadhyaya AR; Pandey SK; Tripathi BD
    Bioresour Technol; 2008 Mar; 99(5):930-6. PubMed ID: 17475484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytoremediation of heavy metals in a tropical impoundment of industrial region.
    Rai PK
    Environ Monit Assess; 2010 Jun; 165(1-4):529-37. PubMed ID: 19430918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal Accumulation Strategies of Emergent Plants in Natural Wetland Ecosystems Contaminated with Coke-Oven Effluent.
    Rana V; Maiti SK
    Bull Environ Contam Toxicol; 2018 Jul; 101(1):55-60. PubMed ID: 29761304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive review on phytotechnology: Heavy metals removal by diverse aquatic plants species from wastewater.
    Rezania S; Taib SM; Md Din MF; Dahalan FA; Kamyab H
    J Hazard Mater; 2016 Nov; 318():587-599. PubMed ID: 27474848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of heavy metal toxicity and constructed wetland system as a tool in remediation.
    Usharani B; Vasudevan N
    Arch Environ Occup Health; 2016; 71(2):102-10. PubMed ID: 25454352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal accumulation from leachate by polyculture in crushed brick and steel slag using pilot-scale constructed wetland in the climate of Pakistan.
    Batool A
    Environ Sci Pollut Res Int; 2019 Oct; 26(30):31508-31521. PubMed ID: 31478177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytoextraction of anthropogenic heavy metal contamination of the Blesbokspruit wetland: Potential of wetland macrophytes.
    Heisi HD; Awosusi AA; Nkuna R; Matambo TS
    J Contam Hydrol; 2023 Feb; 253():104101. PubMed ID: 36379730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An eco-sustainable green approach for heavy metals management: two case studies of developing industrial region.
    Rai PK
    Environ Monit Assess; 2012 Jan; 184(1):421-48. PubMed ID: 21465134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Native herbaceous plant species with potential use in phytoremediation of heavy metals, spotlight on wetlands - A review.
    Oyuela Leguizamo MA; Fernández Gómez WD; Sarmiento MCG
    Chemosphere; 2017 Feb; 168():1230-1247. PubMed ID: 27823781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytoremediation of an integrated poultry and aquaculture wastewater using sub-surface constructed wetland planted with
    Akadiri SA; Dada PO; Badejo AA; Adeosun OJ; Ogunrinde AT; Faloye OT
    Int J Phytoremediation; 2024 May; 26(7):1133-1143. PubMed ID: 38140944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of constructed wetland for the removal of heavy metals from industrial wastewater.
    Khan S; Ahmad I; Shah MT; Rehman S; Khaliq A
    J Environ Manage; 2009 Aug; 90(11):3451-7. PubMed ID: 19535201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphological response of Typha domingensis to an industrial effluent containing heavy metals in a constructed wetland.
    Hadad HR; Mufarrege MM; Pinciroli M; Di Luca GA; Maine MA
    Arch Environ Contam Toxicol; 2010 Apr; 58(3):666-75. PubMed ID: 20041323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective phytoremediation of low-level heavy metals by native macrophytes in a vanadium mining area, China.
    Jiang B; Xing Y; Zhang B; Cai R; Zhang D; Sun G
    Environ Sci Pollut Res Int; 2018 Nov; 25(31):31272-31282. PubMed ID: 30194573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromium removal efficiency of plant, microbe and media in experimental VSSF constructed wetlands under monocropped and co-cropped conditions.
    Kumar P; Kaur R; Celestin D; Kumar P
    Environ Sci Pollut Res Int; 2020 Jan; 27(2):2071-2086. PubMed ID: 31773522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nutrient conditions to Fe-removal mechanisms in constructed wetlands.
    Jayaweera MW; Kasturiarachchi JC; Kularatne RK; Wijeyekoon SL
    J Environ Manage; 2008 May; 87(3):450-60. PubMed ID: 17383797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytoremediation of heavy metals from aqueous solutions by two aquatic macrophytes, Ceratophyllum demersum and Lemna gibba L.
    Abdallah MA
    Environ Technol; 2012; 33(13-15):1609-14. PubMed ID: 22988621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 45.