BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 18709929)

  • 1. Modeling of heavy metals removal from municipal landfill leachate using living biomass of water hyacinth.
    el-Gendy AS
    Int J Phytoremediation; 2008; 10(1):14-30. PubMed ID: 18709929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Municipal landfill leachate treatment for metal removal using water hyacinth in a floating aquatic system.
    El-Gendy AS; Biswas N; Bewtra JK
    Water Environ Res; 2006 Sep; 78(9):951-64. PubMed ID: 17120455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heavy metal pollution induced due to coal mining effluent on surrounding aquatic ecosystem and its management through naturally occurring aquatic macrophytes.
    Mishra VK; Upadhyaya AR; Pandey SK; Tripathi BD
    Bioresour Technol; 2008 Mar; 99(5):930-6. PubMed ID: 17475484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nutrient conditions to Fe-removal mechanisms in constructed wetlands.
    Jayaweera MW; Kasturiarachchi JC; Kularatne RK; Wijeyekoon SL
    J Environ Manage; 2008 May; 87(3):450-60. PubMed ID: 17383797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilizing heavy metal-laden water hyacinth biomass in vermicomposting.
    Tereshchenko NN; Akimova EE; Pisarchuk AD; Yunusova TV; Minaeva OM
    Environ Sci Pollut Res Int; 2015 May; 22(9):7147-54. PubMed ID: 25501861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concentration and speciation of heavy metals during water hyacinth composting.
    Singh J; Kalamdhad AS
    Bioresour Technol; 2012 Nov; 124():169-79. PubMed ID: 22989643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytoremediation of landfill leachate waste contaminants through floating bed technique using water hyacinth and water lettuce.
    Abbas Z; Arooj F; Ali S; Zaheer IE; Rizwan M; Riaz MA
    Int J Phytoremediation; 2019; 21(13):1356-1367. PubMed ID: 31364389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal and physiological influence of the absorption of nutrients and toxic elements by Eichhornia crassipes.
    Martins DF; de Fátima Vitória de Moura M; Bezerra Loiola MI; Di Souza L; Barbosa E Silva KM; Francismar de Medeiros J
    J Environ Monit; 2011 Feb; 13(2):274-9. PubMed ID: 21165485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes.
    Mishra VK; Tripathi BD
    Bioresour Technol; 2008 Oct; 99(15):7091-7. PubMed ID: 18296043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater: experimental comparison of 11 different sorbents.
    Genç-Fuhrman H; Mikkelsen PS; Ledin A
    Water Res; 2007 Feb; 41(3):591-602. PubMed ID: 17173951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heavy metals content in water, water hyacinth and sediments of Lalbagh tank, Bangalore (India).
    Lokeshwari H; Chandrappa GT
    J Environ Sci Eng; 2006 Jul; 48(3):183-8. PubMed ID: 17915781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Utilization of water hyacinth weed (Eichhornia crassipes) for the removal of Pb(II), Cd(II) and Zn(II) from aquatic environments: an adsorption isotherm study.
    Mahamadi C; Nharingo T
    Environ Technol; 2010 Oct; 31(11):1221-8. PubMed ID: 21046952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Competitive adsorption of Pb2+, Cd2+ and Zn2+ ions onto Eichhornia crassipes in binary and ternary systems.
    Mahamadi C; Nharingo T
    Bioresour Technol; 2010 Feb; 101(3):859-64. PubMed ID: 19773154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trace element exposure in the environment from MSW landfill leachate sediments measured by a sequential extraction technique.
    Øygard JK; Gjengedal E; Mobbs HJ
    J Hazard Mater; 2008 May; 153(1-2):751-8. PubMed ID: 17942220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion exchange during heavy metal bio-sorption from aqueous solution by dried biomass of macrophytes.
    Verma VK; Tewari S; Rai JP
    Bioresour Technol; 2008 Apr; 99(6):1932-8. PubMed ID: 17513104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics and mobility of heavy metals in an MSW landfill: implications in risk assessment and reclamation.
    Xiaoli C; Shimaoka T; Xianyan C; Qiang G; Youcai Z
    J Hazard Mater; 2007 Jun; 144(1-2):485-91. PubMed ID: 17118532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromate-tolerant bacteria for enhanced metal uptake by Eichhornia crassipes (Mart.).
    Abou-Shanab RA; Angle JS; van Berkum P
    Int J Phytoremediation; 2007; 9(2):91-105. PubMed ID: 18246718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth of water hyacinth in municipal landfill leachate with different pH.
    El-Gendy AS; Biswas N; Bewtra JK
    Environ Technol; 2004 Jul; 25(7):833-40. PubMed ID: 15346865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation and prediction of emissions from a road built with bottom ash from municipal solid waste incineration (MSWI).
    Aberg A; Kumpiene J; Ecke H
    Sci Total Environ; 2006 Feb; 355(1-3):1-12. PubMed ID: 15893365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arsenic removal from waters by bioremediation with the aquatic plants Water Hyacinth (Eichhornia crassipes) and Lesser Duckweed (Lemna minor).
    Alvarado S; Guédez M; Lué-Merú MP; Nelson G; Alvaro A; Jesús AC; Gyula Z
    Bioresour Technol; 2008 Nov; 99(17):8436-40. PubMed ID: 18442903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.