BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

978 related articles for article (PubMed ID: 18709932)

  • 1. Phytoextraction of zinc, copper, nickel and lead from a contaminated soil by different species of Brassica.
    Purakayastha TJ; Viswanath T; Bhadraray S; Chhonkar PK; Adhikari PP; Suribabu K
    Int J Phytoremediation; 2008; 10(1):61-72. PubMed ID: 18709932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of NTA and EDDS for enhanced phytoextraction of metals from a multiply contaminated soil by Brassica carinata.
    Quartacci MF; Irtelli B; Baker AJ; Navari-Izzo F
    Chemosphere; 2007 Aug; 68(10):1920-8. PubMed ID: 17418884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of Brassica juncea (L.) Czern. (var. Vaibhav) in the phytoextraction of Ni from soil amended with fly ash: selection of extractant for metal bioavailability.
    Gupta AK; Sinha S
    J Hazard Mater; 2006 Aug; 136(2):371-8. PubMed ID: 16434138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity of Mediterranean woody seedlings to copper, nickel and zinc.
    Fuentes D; Disante KB; Valdecantos A; Cortina J; Vallejo VR
    Chemosphere; 2007 Jan; 66(3):412-20. PubMed ID: 16870229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Cd, Pb, Zn, Cu-resistant endophytic Enterobacter sr CBSB1 and Rhodotorula sp. CBSB79 on the growth and phytoextraction of Brassica plants in multimetal contaminated soils.
    Wang W; Deng Z; Tan H; Cao L
    Int J Phytoremediation; 2013; 15(5):488-97. PubMed ID: 23488174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ability of Agrogyron elongatum to accumulate the single metal of cadmium, copper, nickel and lead and root exudation of organic acids.
    Yang H; Wong JW; Yang ZM; Zhou LX
    J Environ Sci (China); 2001 Jul; 13(3):368-75. PubMed ID: 11590773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strategies to use phytoextraction in very acidic soil contaminated by heavy metals.
    Pedron F; Petruzzelli G; Barbafieri M; Tassi E
    Chemosphere; 2009 May; 75(6):808-14. PubMed ID: 19217142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site.
    Yoon J; Cao X; Zhou Q; Ma LQ
    Sci Total Environ; 2006 Sep; 368(2-3):456-64. PubMed ID: 16600337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accumulation of Cu, Pb, Ni and Zn in the halophyte plant Atriplex grown on polluted soil.
    Kachout SS; Mansoura AB; Mechergui R; Leclerc JC; Rejeb MN; Ouerghi Z
    J Sci Food Agric; 2012 Jan; 92(2):336-42. PubMed ID: 21935956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of biosolid incorporation to mollisol soils on Cr, Cu, Ni, Pb, and Zn fractionation, and relationship with their bioavailability.
    Guerra P; Ahumada I; Carrasco A
    Chemosphere; 2007 Aug; 68(11):2021-7. PubMed ID: 17418882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-area experiment on uptake of metals by twelve plants growing in soils contaminated with multiple metals.
    Lai HY; Juang KW; Chen ZS
    Int J Phytoremediation; 2010; 12(8):785-97. PubMed ID: 21166348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced uptake of As, Zn, and Cu by Vetiveria zizanioides and Zea mays using chelating agents.
    Chiu KK; Ye ZH; Wong MH
    Chemosphere; 2005 Sep; 60(10):1365-75. PubMed ID: 16054905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uptake and distribution of zinc, cadmium, lead and copper in Brassica napus var. oleífera and Helianthus annus grown in contaminated soils.
    Herrero EM; López-Gonzálvez A; Ruiz MA; Lucas-García JA; Barbas C
    Int J Phytoremediation; 2003; 5(2):153-67. PubMed ID: 12929497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of plant-growth-promoting effects and concurrent promotion of heavy metal accumulation in the tissues of the plants grown in the polluted soil by Burkholderia strain LD-11.
    Huang GH; Tian HH; Liu HY; Fan XW; Liang Y; Li YZ
    Int J Phytoremediation; 2013; 15(10):991-1009. PubMed ID: 23819291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uptake and translocation of CuEDDS complexes by Brassica carinata.
    Cestone B; Quartacci MF; Navari-Izzo F
    Environ Sci Technol; 2010 Aug; 44(16):6403-8. PubMed ID: 20704241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of single extraction methods for the prediction of bioavailability of metals to Brassica juncea L. Czern. (var. Vaibhav) grown on tannery waste contaminated soil.
    Gupta AK; Sinha S
    J Hazard Mater; 2007 Oct; 149(1):144-50. PubMed ID: 17475401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Naturally-assisted metal phytoextraction by Brassica carinata: role of root exudates.
    Quartacci MF; Irtelli B; Gonnelli C; Gabbrielli R; Navari-Izzo F
    Environ Pollut; 2009 Oct; 157(10):2697-703. PubMed ID: 19497650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytoextraction with Brassica napus L.: a tool for sustainable management of heavy metal contaminated soils.
    Grispen VM; Nelissen HJ; Verkleij JA
    Environ Pollut; 2006 Nov; 144(1):77-83. PubMed ID: 16515826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution of Cd, Pb, Zn, Mo, and S in juvenile and mature Brassica napus L. var. napus.
    Romih N; Grabner B; Lakota M; Ribaric-Lasnik C
    Int J Phytoremediation; 2012 Mar; 14(3):282-301. PubMed ID: 22567712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of soil amendments on the extractability and speciation of cadmium, lead, and copper in a contaminated soil.
    Lin D; Zhou Q
    Bull Environ Contam Toxicol; 2009 Jul; 83(1):136-40. PubMed ID: 19381428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 49.