These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 18710206)

  • 1. Energy transfer dynamics in the presence of preferential hydrogen bonding: collisions of highly vibrationally excited pyridine-h5, -d5, and -f5 with water.
    Liu Q; Havey DK; Mullin AS
    J Phys Chem A; 2008 Oct; 112(39):9509-15. PubMed ID: 18710206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Full state-resolved energy gain profiles of CO2 (J = 2-80) from collisions of highly vibrationally excited molecules. 1. Relaxation of pyrazine (E = 37900 cm(-1)).
    Havey DK; Du J; Liu Q; Mullin AS
    J Phys Chem A; 2010 Jan; 114(3):1569-80. PubMed ID: 20000656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rotationally resolved IR-diode laser studies of ground-state CO2 excited by collisions with vibrationally excited pyridine.
    Johnson JA; Kim K; Mayhew M; Mitchell DG; Sevy ET
    J Phys Chem A; 2008 Mar; 112(12):2543-52. PubMed ID: 18321080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alkylation effects on strong collisions of highly vibrationally excited alkylated pyridines with CO2.
    Liu Q; Du J; Havey DK; Li Z; Miller EM; Mullin AS
    J Phys Chem A; 2007 May; 111(19):4073-80. PubMed ID: 17388383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of weak and strong collisions: highly vibrationally excited pyrazine (E = 37900 cm(-1)) with DCl.
    Du J; Yuan L; Hsieh S; Lin F; Mullin AS
    J Phys Chem A; 2008 Oct; 112(39):9396-404. PubMed ID: 18729434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relaxation dynamics of highly vibrationally excited picoline isomers (E(vib) = 38 300 cm(-1)) with CO2: the role of state density in impulsive collisions.
    Miller EM; Murat L; Bennette N; Hayes M; Mullin AS
    J Phys Chem A; 2006 Mar; 110(9):3266-72. PubMed ID: 16509652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. State-resolved collisional quenching of vibrationally excited pyrazine (E(vib) = 37,900 cm(-1)) by D35Cl(v = 0).
    Li Z; Korobkova E; Werner K; Shum L; Mullin AS
    J Chem Phys; 2005 Nov; 123(17):174306. PubMed ID: 16375527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy-dependent dynamics of large-DeltaE collisions: highly vibrationally excited azulene (E=20 390 and 38 580 cm(-1)) with CO2.
    Yuan L; Du J; Mullin AS
    J Chem Phys; 2008 Jul; 129(1):014303. PubMed ID: 18624476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collisional relaxation of the three vibrationally excited difluorobenzene isomers by collisions with CO2: effect of donor vibrational mode.
    Mitchell DG; Johnson AM; Johnson JA; Judd KA; Kim K; Mayhew M; Powell AL; Sevy ET
    J Phys Chem A; 2008 Feb; 112(6):1157-67. PubMed ID: 18201072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of alkylation on deviations from Lennard-Jones collision rates for highly excited aromatic molecules: collisions of methylated pyridines with HOD.
    Liu Q; Havey DK; Li Z; Mullin AS
    J Phys Chem A; 2009 Apr; 113(16):4387-96. PubMed ID: 19301894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collisions of highly vibrationally excited pyrazine (E vib = 37,900 cm(-1)) with HOD: state-resolved probing of strong and weak collisions.
    Havey DK; Liu Q; Li Z; Elioff M; Mullin AS
    J Phys Chem A; 2007 Dec; 111(51):13321-9. PubMed ID: 18052137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy transfer of highly vibrationally excited azulene: collisions between azulene and krypton.
    Liu CL; Hsu HC; Lyu JJ; Ni CK
    J Chem Phys; 2006 Feb; 124(5):054302. PubMed ID: 16468864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. OH-stretch vibrational relaxation of HOD in liquid to supercritical D2O.
    Schwarzer D; Lindner J; Vöhringer P
    J Phys Chem A; 2006 Mar; 110(9):2858-67. PubMed ID: 16509606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Full state-resolved energy gain profiles of CO2 from collisions with highly vibrationally excited molecules. II. Energy-dependent pyrazine (E = 32,700 and 37,900 cm(-1)) relaxation.
    Du J; Sassin NA; Havey DK; Hsu K; Mullin AS
    J Phys Chem A; 2013 Nov; 117(46):12104-15. PubMed ID: 24063656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Vibrational to rotational energy transfer between CsH (Chi1 Sigma+, nu > or = 15) and CO2].
    Dai K; Wang SY; Liu J; Shen YF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Nov; 32(11):2902-5. PubMed ID: 23387146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Infrared spectroscopy of hydrogen-bonded 2-fluoropyridine-water clusters in supersonic jets.
    Nibu Y; Marui R; Shimada H
    J Phys Chem A; 2006 Aug; 110(31):9627-32. PubMed ID: 16884196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy transfer of highly vibrationally excited naphthalene. II. Vibrational energy dependence and isotope and mass effects.
    Liu CL; Hsu HC; Hsu YC; Ni CK
    J Chem Phys; 2008 Mar; 128(12):124320. PubMed ID: 18376932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ND-stretching vibrational energy relaxation of NH(2)D in liquid-to-supercritical ammonia studied by femtosecond midinfrared spectroscopy.
    Schäfer T; Schwarzer D; Lindner J; Vöhringer P
    J Chem Phys; 2008 Feb; 128(6):064502. PubMed ID: 18282051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quenching of highly vibrationally excited pyrimidine by collisions with CO2.
    Johnson JA; Duffin AM; Hom BJ; Jackson KE; Sevy ET
    J Chem Phys; 2008 Feb; 128(5):054304. PubMed ID: 18266447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen-bond disruption by vibrational excitations in water.
    Wang Z; Pang Y; Dlott DD
    J Phys Chem A; 2007 May; 111(17):3196-208. PubMed ID: 17388394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.