BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 18710235)

  • 1. Epoxide hydrolase Lsd19 for polyether formation in the biosynthesis of lasalocid A: direct experimental evidence on polyene-polyepoxide hypothesis in polyether biosynthesis.
    Shichijo Y; Migita A; Oguri H; Watanabe M; Tokiwano T; Watanabe K; Oikawa H
    J Am Chem Soc; 2008 Sep; 130(37):12230-1. PubMed ID: 18710235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intriguing substrate tolerance of epoxide hydrolase Lsd19 involved in biosynthesis of the ionophore antibiotic lasalocid A.
    Matsuura Y; Shichijo Y; Minami A; Migita A; Oguri H; Watanabe M; Tokiwano T; Watanabe K; Oikawa H
    Org Lett; 2010 May; 12(10):2226-9. PubMed ID: 20394359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic catalysis of anti-Baldwin ring closure in polyether biosynthesis.
    Hotta K; Chen X; Paton RS; Minami A; Li H; Swaminathan K; Mathews II; Watanabe K; Oikawa H; Houk KN; Kim CY
    Nature; 2012 Mar; 483(7389):355-8. PubMed ID: 22388816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epoxide hydrolase-lasalocid a structure provides mechanistic insight into polyether natural product biosynthesis.
    Wong FT; Hotta K; Chen X; Fang M; Watanabe K; Kim CY
    J Am Chem Soc; 2015 Jan; 137(1):86-9. PubMed ID: 25535803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a gene cluster of polyether antibiotic lasalocid from Streptomyces lasaliensis.
    Migita A; Watanabe M; Hirose Y; Watanabe K; Tokiwano T; Kinashi H; Oikawa H
    Biosci Biotechnol Biochem; 2009 Jan; 73(1):169-76. PubMed ID: 19129623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthetic machinery of ionophore polyether lasalocid: enzymatic construction of polyether skeleton.
    Minami A; Oguri H; Watanabe K; Oikawa H
    Curr Opin Chem Biol; 2013 Aug; 17(4):555-61. PubMed ID: 23796908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic epoxide-opening cascades catalyzed by a pair of epoxide hydrolases in the ionophore polyether biosynthesis.
    Minami A; Migita A; Inada D; Hotta K; Watanabe K; Oguri H; Oikawa H
    Org Lett; 2011 Apr; 13(7):1638-41. PubMed ID: 21375229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of specific mutants in the lasalocid gene cluster: evidence for enzymatic catalysis of a disfavoured polyether ring closure.
    Smith L; Hong H; Spencer JB; Leadlay PF
    Chembiochem; 2008 Dec; 9(18):2967-75. PubMed ID: 19025863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequential enzymatic epoxidation involved in polyether lasalocid biosynthesis.
    Minami A; Shimaya M; Suzuki G; Migita A; Shinde SS; Sato K; Watanabe K; Tamura T; Oguri H; Oikawa H
    J Am Chem Soc; 2012 May; 134(17):7246-9. PubMed ID: 22506807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Allosteric regulation of epoxide opening cascades by a pair of epoxide hydrolases in monensin biosynthesis.
    Minami A; Ose T; Sato K; Oikawa A; Kuroki K; Maenaka K; Oguri H; Oikawa H
    ACS Chem Biol; 2014 Feb; 9(2):562-9. PubMed ID: 24320215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The enzymology of polyether biosynthesis.
    Liu T; Cane DE; Deng Z
    Methods Enzymol; 2009; 459():187-214. PubMed ID: 19362641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrophilic and nucleophilic enzymatic cascade reactions in biosynthesis.
    Ueberbacher BT; Hall M; Faber K
    Nat Prod Rep; 2012 Mar; 29(3):337-50. PubMed ID: 22307731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A complete gene cluster from Streptomyces nanchangensis NS3226 encoding biosynthesis of the polyether ionophore nanchangmycin.
    Sun Y; Zhou X; Dong H; Tu G; Wang M; Wang B; Deng Z
    Chem Biol; 2003 May; 10(5):431-41. PubMed ID: 12770825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the biosynthetic gene cluster for the polyether antibiotic monensin in Streptomyces cinnamonensis and evidence for the role of monB and monC genes in oxidative cyclization.
    Oliynyk M; Stark CB; Bhatt A; Jones MA; Hughes-Thomas ZA; Wilkinson C; Oliynyk Z; Demydchuk Y; Staunton J; Leadlay PF
    Mol Microbiol; 2003 Sep; 49(5):1179-90. PubMed ID: 12940979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for the role of the monB genes in polyether ring formation during monensin biosynthesis.
    Gallimore AR; Stark CB; Bhatt A; Harvey BM; Demydchuk Y; Bolanos-Garcia V; Fowler DJ; Staunton J; Leadlay PF; Spencer JB
    Chem Biol; 2006 Apr; 13(4):453-60. PubMed ID: 16632258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosynthesis of lasalocid A. Metabolic interrelationships of carboxylic acid precursors and polyether antibiotics.
    Sherman MM; Yue S; Hutchinson CR
    J Antibiot (Tokyo); 1986 Aug; 39(8):1135-43. PubMed ID: 3759663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into polyether biosynthesis from analysis of the nigericin biosynthetic gene cluster in Streptomyces sp. DSM4137.
    Harvey BM; Mironenko T; Sun Y; Hong H; Deng Z; Leadlay PF; Weissman KJ; Haydock SF
    Chem Biol; 2007 Jun; 14(6):703-14. PubMed ID: 17584617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A cold-adapted epoxide hydrolase from a strict marine bacterium, Sphingophyxis alaskensis.
    Kang JH; Woo JH; Kang SG; Hwang YO; Kim SJ
    J Microbiol Biotechnol; 2008 Aug; 18(8):1445-52. PubMed ID: 18756107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of an epoxide hydrolase from the Florida red tide dinoflagellate, Karenia brevis.
    Sun P; Leeson C; Zhi X; Leng F; Pierce RH; Henry MS; Rein KS
    Phytochemistry; 2016 Feb; 122():11-21. PubMed ID: 26626160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tetrahydropyran formation by rearrangement of an epoxy ester: a model for the biosynthesis of marine polyether toxins.
    Giner JL
    J Org Chem; 2005 Jan; 70(2):721-4. PubMed ID: 15651829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.