BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 18710239)

  • 1. Automated NMR assignment of protein side chain resonances using automated projection spectroscopy (APSY).
    Hiller S; Joss R; Wider G
    J Am Chem Soc; 2008 Sep; 130(36):12073-9. PubMed ID: 18710239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein side-chain resonance assignment and NOE assignment using RDC-defined backbones without TOCSY data.
    Zeng J; Zhou P; Donald BR
    J Biomol NMR; 2011 Aug; 50(4):371-95. PubMed ID: 21706248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated protein fold determination using a minimal NMR constraint strategy.
    Zheng D; Huang YJ; Moseley HN; Xiao R; Aramini J; Swapna GV; Montelione GT
    Protein Sci; 2003 Jun; 12(6):1232-46. PubMed ID: 12761394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 5D solid-state NMR spectroscopy for facilitated resonance assignment.
    Klein A; Vasa SK; Linser R
    J Biomol NMR; 2023 Dec; 77(5-6):229-245. PubMed ID: 37943392
    [No Abstract]   [Full Text] [Related]  

  • 5. A Semiautomated Assignment Protocol for Methyl Group Side Chains in Large Proteins.
    Kim J; Wang Y; Li G; Veglia G
    Methods Enzymol; 2016; 566():35-57. PubMed ID: 26791975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMR-profiles of protein solutions.
    Pedrini B; Serrano P; Mohanty B; Geralt M; Wüthrich K
    Biopolymers; 2013 Nov; 99(11):825-31. PubMed ID: 23839514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methods to identify the NMR resonances of the ¹³C-dimethyl N-terminal amine on reductively methylated proteins.
    Roberson KJ; Brady PN; Sweeney MM; Macnaughtan MA
    J Vis Exp; 2013 Dec; (82):e50875. PubMed ID: 24378713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GANA--a genetic algorithm for NMR backbone resonance assignment.
    Lin HN; Wu KP; Chang JM; Sung TY; Hsu WL
    Nucleic Acids Res; 2005; 33(14):4593-601. PubMed ID: 16093550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ASAP: An automatic sequential assignment program for congested multidimensional solid state NMR spectra.
    Chen B
    J Magn Reson; 2024 Apr; 361():107664. PubMed ID: 38522163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Breaking boundaries: TINTO in POKY for computer vision-based NMR walking strategies.
    Giraldo AEL; Werner Z; Rahimi M; Lee W
    J Biomol NMR; 2023 Dec; 77(5-6):217-228. PubMed ID: 37804349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Efficient Labelling Approach to Harness Backbone and Side-Chain Protons in (1) H-Detected Solid-State NMR Spectroscopy.
    Mance D; Sinnige T; Kaplan M; Narasimhan S; Daniëls M; Houben K; Baldus M; Weingarth M
    Angew Chem Int Ed Engl; 2015 Dec; 54(52):15799-803. PubMed ID: 26555653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Solution NMR Approach To Determine the Chemical Structures of Carbohydrates Using the Hydroxyl Groups as Starting Points.
    Brown GD; Bauer J; Osborn HMI; Kuemmerle R
    ACS Omega; 2018 Dec; 3(12):17957-17975. PubMed ID: 31458388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational Protocol for the Spectral Assignment of NMR Resonances in Covalent Organic Frameworks.
    Vanlommel S; Borgmans S; Chandran CV; Radhakrishnan S; Van Der Voort P; Breynaert E; Van Speybroeck V
    J Chem Theory Comput; 2024 May; 20(9):3823-3838. PubMed ID: 38650071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated projection spectroscopy in solid-state NMR.
    Klein A; Vasa SK; Linser R
    J Biomol NMR; 2018 Dec; 72(3-4):163-170. PubMed ID: 30430291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated NMR resonance assignments and structure determination using a minimal set of 4D spectra.
    Evangelidis T; Nerli S; Nováček J; Brereton AE; Karplus PA; Dotas RR; Venditti V; Sgourakis NG; Tripsianes K
    Nat Commun; 2018 Jan; 9(1):384. PubMed ID: 29374165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Five and four dimensional experiments for robust backbone resonance assignment of large intrinsically disordered proteins: application to Tau3x protein.
    Żerko S; Byrski P; Włodarczyk-Pruszyński P; Górka M; Ledolter K; Masliah E; Konrat R; Koźmiński W
    J Biomol NMR; 2016 Aug; 65(3-4):193-203. PubMed ID: 27430223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 1H, 15N, 13C resonance assignment of human GAP-43.
    Flamm AG; Żerko S; Zawadzka-Kazimierczuk A; Koźmiński W; Konrat R; Coudevylle N
    Biomol NMR Assign; 2016 Apr; 10(1):171-4. PubMed ID: 26748655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a method for reconstruction of crowded NMR spectra from undersampled time-domain data.
    Ueda T; Yoshiura C; Matsumoto M; Kofuku Y; Okude J; Kondo K; Shiraishi Y; Takeuchi K; Shimada I
    J Biomol NMR; 2015 May; 62(1):31-41. PubMed ID: 25677224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. (1)H, (15)N, (13)C resonance assignment of human osteopontin.
    Platzer G; Żerko S; Saxena S; Koźmiński W; Konrat R
    Biomol NMR Assign; 2015 Oct; 9(2):289-92. PubMed ID: 25616494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strategy for automated NMR resonance assignment of RNA: application to 48-nucleotide K10.
    Krähenbühl B; Lukavsky P; Wider G
    J Biomol NMR; 2014 Aug; 59(4):231-40. PubMed ID: 24899400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.