These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

413 related articles for article (PubMed ID: 18710437)

  • 1. The developmental basis of skeletal cell differentiation and the molecular basis of major skeletal defects.
    Blair HC; Zaidi M; Huang CL; Sun L
    Biol Rev Camb Philos Soc; 2008 Nov; 83(4):401-15. PubMed ID: 18710437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparative view on mechanisms and functions of skeletal remodelling in teleost fish, with special emphasis on osteoclasts and their function.
    Witten PE; Huysseune A
    Biol Rev Camb Philos Soc; 2009 May; 84(2):315-46. PubMed ID: 19382934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone cell biology: the regulation of development, structure, and function in the skeleton.
    Marks SC; Popoff SN
    Am J Anat; 1988 Sep; 183(1):1-44. PubMed ID: 3055928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy regulation by the skeleton.
    Wolf G
    Nutr Rev; 2008 Apr; 66(4):229-33. PubMed ID: 18366536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms balancing skeletal matrix synthesis and degradation.
    Blair HC; Zaidi M; Schlesinger PH
    Biochem J; 2002 Jun; 364(Pt 2):329-41. PubMed ID: 12023876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differentiation and growth of kype skeletal tissues in anadromous male Atlantic salmon (Salmo salar).
    Witten PE; Hall BK
    Int J Dev Biol; 2002 Aug; 46(5):719-30. PubMed ID: 12216984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How the osteoclast degrades bone.
    Blair HC
    Bioessays; 1998 Oct; 20(10):837-46. PubMed ID: 9819571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The EGFR network in bone biology and pathology.
    Schneider MR; Sibilia M; Erben RG
    Trends Endocrinol Metab; 2009 Dec; 20(10):517-24. PubMed ID: 19819718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boning up on ephrin signaling.
    Mundy GR; Elefteriou F
    Cell; 2006 Aug; 126(3):441-3. PubMed ID: 16901775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems.
    Takayanagi H
    Nat Rev Immunol; 2007 Apr; 7(4):292-304. PubMed ID: 17380158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic control of skeletal development.
    Wagner EF; Karsenty G
    Curr Opin Genet Dev; 2001 Oct; 11(5):527-32. PubMed ID: 11532394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Skeletal receptors for steroid-family regulating glycoprotein hormones: A multilevel, integrated physiological control system.
    Blair HC; Robinson LJ; Sun L; Isales C; Davies TF; Zaidi M
    Ann N Y Acad Sci; 2011 Dec; 1240():26-31. PubMed ID: 22172036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osteoimmunology--the hidden immune regulation of bone.
    Caetano-Lopes J; Canhão H; Fonseca JE
    Autoimmun Rev; 2009 Jan; 8(3):250-5. PubMed ID: 18722561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone development.
    Olsen BR; Reginato AM; Wang W
    Annu Rev Cell Dev Biol; 2000; 16():191-220. PubMed ID: 11031235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Medaka as a model organism of skeletal development].
    Inohaya K; Kudo A
    Tanpakushitsu Kakusan Koso; 2000 Dec; 45(17 Suppl):2745-51. PubMed ID: 11187775
    [No Abstract]   [Full Text] [Related]  

  • 16. Early evolution of vertebrate skeletal tissues and cellular interactions, and the canalization of skeletal development.
    Donoghue PC; Sansom IJ; Downs JP
    J Exp Zool B Mol Dev Evol; 2006 May; 306(3):278-94. PubMed ID: 16555304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional networks controlling skeletal development.
    Hartmann C
    Curr Opin Genet Dev; 2009 Oct; 19(5):437-43. PubMed ID: 19836226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Balanced regulation of proliferation, growth, differentiation, and degradation in skeletal cells.
    Blair HC; Sun L; Kohanski RA
    Ann N Y Acad Sci; 2007 Nov; 1116():165-73. PubMed ID: 17646258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of the viscerocranial skeleton during embryogenesis of the sea lamprey, Petromyzon Marinus.
    Martin WM; Bumm LA; McCauley DW
    Dev Dyn; 2009 Dec; 238(12):3126-38. PubMed ID: 19924811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic control of skeletal development.
    Karsenty G
    Novartis Found Symp; 2001; 232():6-17; discussion 17-22. PubMed ID: 11277087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.