These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 18710871)
1. Markov model plus k-word distributions: a synergy that produces novel statistical measures for sequence comparison. Dai Q; Yang Y; Wang T Bioinformatics; 2008 Oct; 24(20):2296-302. PubMed ID: 18710871 [TBL] [Abstract][Full Text] [Related]
2. Comparison study on k-word statistical measures for protein: from sequence to 'sequence space'. Dai Q; Wang T BMC Bioinformatics; 2008 Sep; 9():394. PubMed ID: 18811946 [TBL] [Abstract][Full Text] [Related]
3. A novel statistical measure for sequence comparison on the basis of k-word counts. Yang X; Wang T J Theor Biol; 2013 Feb; 318():91-100. PubMed ID: 23147229 [TBL] [Abstract][Full Text] [Related]
4. Using Markov model to improve word normalization algorithm for biological sequence comparison. Dai Q; Liu X; Yao Y; Zhao F Amino Acids; 2012 May; 42(5):1867-77. PubMed ID: 21505825 [TBL] [Abstract][Full Text] [Related]
5. Numerical characteristics of word frequencies and their application to dissimilarity measure for sequence comparison. Dai Q; Liu X; Yao Y; Zhao F J Theor Biol; 2011 May; 276(1):174-80. PubMed ID: 21334347 [TBL] [Abstract][Full Text] [Related]
6. An efficient binomial model-based measure for sequence comparison and its application. Liu X; Dai Q; Li L; He Z J Biomol Struct Dyn; 2011 Apr; 28(5):833-43. PubMed ID: 21294594 [TBL] [Abstract][Full Text] [Related]
8. Weighted relative entropy for alignment-free sequence comparison based on Markov model. Chang G; Wang T J Biomol Struct Dyn; 2011 Feb; 28(4):545-55. PubMed ID: 21142223 [TBL] [Abstract][Full Text] [Related]
9. A statistical method for alignment-free comparison of regulatory sequences. Kantorovitz MR; Robinson GE; Sinha S Bioinformatics; 2007 Jul; 23(13):i249-55. PubMed ID: 17646303 [TBL] [Abstract][Full Text] [Related]
10. Compression-based classification of biological sequences and structures via the Universal Similarity Metric: experimental assessment. Ferragina P; Giancarlo R; Greco V; Manzini G; Valiente G BMC Bioinformatics; 2007 Jul; 8():252. PubMed ID: 17629909 [TBL] [Abstract][Full Text] [Related]
11. Applications of hidden Markov models for characterization of homologous DNA sequences with a common gene. Hobolth A; Jensen JL J Comput Biol; 2005 Mar; 12(2):186-203. PubMed ID: 15767776 [TBL] [Abstract][Full Text] [Related]
12. The Burrows-Wheeler similarity distribution between biological sequences based on Burrows-Wheeler transform. Yang L; Zhang X; Wang T J Theor Biol; 2010 Feb; 262(4):742-9. PubMed ID: 19903487 [TBL] [Abstract][Full Text] [Related]
13. Using Gaussian model to improve biological sequence comparison. Dai Q; Liu X; Li L; Yao Y; Han B; Zhu L J Comput Chem; 2010 Jan; 31(2):351-61. PubMed ID: 19479732 [TBL] [Abstract][Full Text] [Related]
14. An efficient algorithm for statistical multiple alignment on arbitrary phylogenetic trees. Lunter GA; Miklós I; Song YS; Hein J J Comput Biol; 2003; 10(6):869-89. PubMed ID: 14980015 [TBL] [Abstract][Full Text] [Related]
15. Alignment-free comparison of genome sequences by a new numerical characterization. Huang G; Zhou H; Li Y; Xu L J Theor Biol; 2011 Jul; 281(1):107-12. PubMed ID: 21536050 [TBL] [Abstract][Full Text] [Related]
16. Alignment free comparison: k word voting model and its applications. Yang L; Zhang X; Zhu H J Theor Biol; 2013 Oct; 335():276-82. PubMed ID: 23850481 [TBL] [Abstract][Full Text] [Related]
17. Alignment free comparison: similarity distribution between the DNA primary sequences based on the shortest absent word. Yang L; Zhang X; Zhu H J Theor Biol; 2012 Feb; 295():125-31. PubMed ID: 22138094 [TBL] [Abstract][Full Text] [Related]
18. A complexity-based method to compare RNA secondary structures and its application. Zhang S; Wang T J Biomol Struct Dyn; 2010 Oct; 28(2):247-58. PubMed ID: 20645657 [TBL] [Abstract][Full Text] [Related]