BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 1871136)

  • 41. A versatile and highly repressible Escherichia coli expression system based on invertible promoters: expression of a gene encoding a toxic product.
    Wülfing C; Plückthun A
    Gene; 1993 Dec; 136(1-2):199-203. PubMed ID: 8294003
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Exploring the use of antisense, enzymatic RNA molecules (ribozymes) as therapeutic agents.
    Rossi JJ; Elkins D; Taylor N; Zaia J; Sullivan S; Deshler JO
    Antisense Res Dev; 1991; 1(3):285-8. PubMed ID: 1821650
    [TBL] [Abstract][Full Text] [Related]  

  • 43. HIV-1 LTR as a target for synthetic ribozyme-mediated inhibition of gene expression: site selection and inhibition in cell culture.
    Bramlage B; Luzi E; Eckstein F
    Nucleic Acids Res; 2000 Nov; 28(21):4059-67. PubMed ID: 11058100
    [TBL] [Abstract][Full Text] [Related]  

  • 44. DNA binding properties of the integrase proteins of human immunodeficiency viruses types 1 and 2.
    van Gent DC; Elgersma Y; Bolk MW; Vink C; Plasterk RH
    Nucleic Acids Res; 1991 Jul; 19(14):3821-7. PubMed ID: 1861975
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Gene integration in the Escherichia coli chromosome mediated by Tn21 integrase (Int21).
    Francia MV; García Lobo JM
    J Bacteriol; 1996 Feb; 178(3):894-8. PubMed ID: 8550528
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Human immunodeficiency virus integration protein expressed in Escherichia coli possesses selective DNA cleaving activity.
    Sherman PA; Fyfe JA
    Proc Natl Acad Sci U S A; 1990 Jul; 87(13):5119-23. PubMed ID: 2164223
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Characterization of a DNA binding domain in the C-terminus of HIV-1 integrase by deletion mutagenesis.
    Woerner AM; Marcus-Sekura CJ
    Nucleic Acids Res; 1993 Jul; 21(15):3507-11. PubMed ID: 8346030
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ribozymes that cleave potato leafroll virus RNA within the coat protein and polymerase genes.
    Lamb JW; Hay RT
    J Gen Virol; 1990 Oct; 71 ( Pt 10)():2257-64. PubMed ID: 2230733
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Intermolecular disintegration and intramolecular strand transfer activities of wild-type and mutant HIV-1 integrase.
    Mazumder A; Engelman A; Craigie R; Fesen M; Pommier Y
    Nucleic Acids Res; 1994 Mar; 22(6):1037-43. PubMed ID: 8152908
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Trans-splicing ribozymes for targeted gene delivery.
    Köhler U; Ayre BG; Goodman HM; Haseloff J
    J Mol Biol; 1999 Feb; 285(5):1935-50. PubMed ID: 9925776
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Catalytic domain of human immunodeficiency virus type 1 integrase: identification of a soluble mutant by systematic replacement of hydrophobic residues.
    Jenkins TM; Hickman AB; Dyda F; Ghirlando R; Davies DR; Craigie R
    Proc Natl Acad Sci U S A; 1995 Jun; 92(13):6057-61. PubMed ID: 7597080
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Design and anti-HIV-1 activity of ribozymes that cleave HIV-1 LTR.
    Koizumi M; Ozawa Y; Yagi R; Nishigaki T; Kaneko M; Oka S; Kimura S; Iwamoto A; Komatsu Y; Ohtsuka E
    Nucleic Acids Symp Ser; 1995; (34):125-6. PubMed ID: 8841584
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The effect of structure in a long target RNA on ribozyme cleavage efficiency.
    Campbell TB; McDonald CK; Hagen M
    Nucleic Acids Res; 1997 Dec; 25(24):4985-93. PubMed ID: 9396806
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A three-nucleotide helix I is sufficient for full activity of a hammerhead ribozyme: advantages of an asymmetric design.
    Tabler M; Homann M; Tzortzakaki S; Sczakiel G
    Nucleic Acids Res; 1994 Sep; 22(19):3958-65. PubMed ID: 7937118
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Inhibition of human immunodeficiency virus type 1 integrase by a hydrophobic cation: the phenanthroline-cuprous complex.
    Mazumder A; Gupta M; Perrin DM; Sigman DS; Rabinovitz M; Pommier Y
    AIDS Res Hum Retroviruses; 1995 Jan; 11(1):115-25. PubMed ID: 7734185
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multiple site-specific cleavage of HIV RNA by transcribed ribozymes from shotgun-type trimming plasmid.
    Ohkawa J; Yuyama N; Takebe Y; Nisikawa S; Homann M; Sczakiel G; Taira K
    Nucleic Acids Symp Ser; 1993; (29):121-2. PubMed ID: 8247732
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Zinc stimulates Mg2+-dependent 3'-processing activity of human immunodeficiency virus type 1 integrase in vitro.
    Lee SP; Han MK
    Biochemistry; 1996 Mar; 35(12):3837-44. PubMed ID: 8620007
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In vitro integration of human immunodeficiency virus type 1 cDNA into targets containing protein-induced bends.
    Bor YC; Bushman FD; Orgel LE
    Proc Natl Acad Sci U S A; 1995 Oct; 92(22):10334-8. PubMed ID: 7479779
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Acquirement of hairpin ribozyme activity by the long substrate-binding site.
    Hisamatsu S; Sonoki S; Kikuchi Y
    Nucleic Acids Symp Ser; 1993; (29):173-4. PubMed ID: 7504243
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Acquisition of novel catalytic activity by the M1 RNA ribozyme: the cost of molecular adaptation.
    Cole KB; Dorit RL
    J Mol Biol; 1999 Oct; 292(4):931-44. PubMed ID: 10525416
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.