These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 18711710)

  • 41. Selective attention to task-irrelevant emotional distractors is unaffected by the perceptual load associated with a foreground task.
    Hindi Attar C; Müller MM
    PLoS One; 2012; 7(5):e37186. PubMed ID: 22649513
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of attention and arousal on early responses in striate cortex.
    Poghosyan V; Shibata T; Ioannides AA
    Eur J Neurosci; 2005 Jul; 22(1):225-34. PubMed ID: 16029212
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Functional hemispheric asymmetries of global/local processing mirrored by the steady-state visual evoked potential.
    Martens U; Hübner R
    Brain Cogn; 2013 Mar; 81(2):161-6. PubMed ID: 23246827
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Spatial and object-based attention modulates broadband high-frequency responses across the human visual cortical hierarchy.
    Davidesco I; Harel M; Ramot M; Kramer U; Kipervasser S; Andelman F; Neufeld MY; Goelman G; Fried I; Malach R
    J Neurosci; 2013 Jan; 33(3):1228-40. PubMed ID: 23325259
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Attentional load asymmetrically affects early electrophysiological indices of visual orienting.
    O'Connell RG; Schneider D; Hester R; Mattingley JB; Bellgrove MA
    Cereb Cortex; 2011 May; 21(5):1056-65. PubMed ID: 20843899
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of feature-selective and spatial attention at different stages of visual processing.
    Andersen SK; Fuchs S; Müller MM
    J Cogn Neurosci; 2011 Jan; 23(1):238-46. PubMed ID: 19702461
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of attentional filtering demands on preparatory ERPs elicited in a spatial cueing task.
    Seiss E; Driver J; Eimer M
    Clin Neurophysiol; 2009 Jun; 120(6):1087-95. PubMed ID: 19410504
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Selective attention to spatial frequency gratings affects visual processing as early as 60 msec. poststimulus.
    Zani A; Proverbio AM
    Percept Mot Skills; 2009 Aug; 109(1):140-58. PubMed ID: 19831095
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Appearing and disappearing stimuli trigger a reflexive modulation of visual cortical activity.
    Hopfinger JB; Maxwell JS
    Brain Res Cogn Brain Res; 2005 Sep; 25(1):48-56. PubMed ID: 15907377
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Feeling happy enhances early spatial encoding of peripheral information automatically: electrophysiological time-course and neural sources.
    Vanlessen N; Rossi V; De Raedt R; Pourtois G
    Cogn Affect Behav Neurosci; 2014 Sep; 14(3):951-69. PubMed ID: 24570275
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Processing capacity in chronic pain patients: a visual event-related potentials study.
    Veldhuijzen DS; Kenemans JL; van Wijck AJ; Olivier B; Kalkman CJ; Volkerts ER
    Pain; 2006 Mar; 121(1-2):60-8. PubMed ID: 16480825
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Early interaction between perceptual load and involuntary attention: An event-related potential study.
    Fu S; Fedota J; Greenwood PM; Parasuraman R
    Neurosci Lett; 2010 Jan; 468(1):68-71. PubMed ID: 19874869
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Attentional modulation of perceptual grouping in human visual cortex: ERP studies.
    Han S; Jiang Y; Mao L; Humphreys GW; Qin J
    Hum Brain Mapp; 2005 Nov; 26(3):199-209. PubMed ID: 15929087
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Competition for attentional resources between low spatial frequency content of emotional images and a foreground task in early visual cortex.
    Müller MM; Gundlach C
    Psychophysiology; 2017 Mar; 54(3):429-443. PubMed ID: 27990660
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Spatial filtering during visual search: evidence from human electrophysiology.
    Luck SJ; Hillyard SA
    J Exp Psychol Hum Percept Perform; 1994 Oct; 20(5):1000-14. PubMed ID: 7964526
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nasotemporal ERP differences: evidence for increased inhibition of temporal distractors.
    Huber-Huber C; Grubert A; Ansorge U; Eimer M
    J Neurophysiol; 2015 Apr; 113(7):2210-9. PubMed ID: 25589587
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Object Selection by Automatic Spreading of Top-Down Attentional Signals in V1.
    Ekman M; Roelfsema PR; de Lange FP
    J Neurosci; 2020 Nov; 40(48):9250-9259. PubMed ID: 33087475
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electrophysiological correlates of early attentional feature selection and distractor filtering.
    Akyürek EG; Schubö A
    Biol Psychol; 2013 May; 93(2):269-78. PubMed ID: 23454277
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Attentional bias to briefly presented emotional distractors follows a slow time course in visual cortex.
    Müller MM; Andersen SK; Hindi Attar C
    J Neurosci; 2011 Nov; 31(44):15914-8. PubMed ID: 22049434
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Perceptual load interacts with stimulus processing across sensory modalities.
    Klemen J; Büchel C; Rose M
    Eur J Neurosci; 2009 Jun; 29(12):2426-34. PubMed ID: 19490081
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.