BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 18712749)

  • 1. Constructing and analyzing the fitness landscape of an experimental evolutionary process.
    Reetz MT; Sanchis J
    Chembiochem; 2008 Sep; 9(14):2260-7. PubMed ID: 18712749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes.
    Reetz MT; Carballeira JD
    Nat Protoc; 2007; 2(4):891-903. PubMed ID: 17446890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iterative saturation mutagenesis accelerates laboratory evolution of enzyme stereoselectivity: rigorous comparison with traditional methods.
    Reetz MT; Prasad S; Carballeira JD; Gumulya Y; Bocola M
    J Am Chem Soc; 2010 Jul; 132(26):9144-52. PubMed ID: 20536132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shedding light on the efficacy of laboratory evolution based on iterative saturation mutagenesis.
    Reetz MT; Kahakeaw D; Sanchis J
    Mol Biosyst; 2009 Feb; 5(2):115-22. PubMed ID: 19156255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Many pathways in laboratory evolution can lead to improved enzymes: how to escape from local minima.
    Gumulya Y; Sanchis J; Reetz MT
    Chembiochem; 2012 May; 13(7):1060-6. PubMed ID: 22522601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing the thermal robustness of an enzyme by directed evolution: least favorable starting points and inferior mutants can map superior evolutionary pathways.
    Gumulya Y; Reetz MT
    Chembiochem; 2011 Nov; 12(16):2502-10. PubMed ID: 21913300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Addressing the numbers problem in directed evolution.
    Reetz MT; Kahakeaw D; Lohmer R
    Chembiochem; 2008 Jul; 9(11):1797-804. PubMed ID: 18567049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Knowledge-guided laboratory evolution of protein thermolability.
    Reetz MT; Soni P; Fernández L
    Biotechnol Bioeng; 2009 Apr; 102(6):1712-7. PubMed ID: 19072845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directed evolution of an enantioselective epoxide hydrolase: uncovering the source of enantioselectivity at each evolutionary stage.
    Reetz MT; Bocola M; Wang LW; Sanchis J; Cronin A; Arand M; Zou J; Archelas A; Bottalla AL; Naworyta A; Mowbray SL
    J Am Chem Soc; 2009 Jun; 131(21):7334-43. PubMed ID: 19469578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inverting enantioselectivity of Burkholderia gladioli esterase EstB by directed and designed evolution.
    Ivancic M; Valinger G; Gruber K; Schwab H
    J Biotechnol; 2007 Mar; 129(1):109-22. PubMed ID: 17147964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surveying a local fitness landscape of a protein with epistatic sites for the study of directed evolution.
    Aita T; Hamamatsu N; Nomiya Y; Uchiyama H; Shibanaka Y; Husimi Y
    Biopolymers; 2002 Jul; 64(2):95-105. PubMed ID: 11979520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revealing evolutionary pathways by fitness landscape reconstruction.
    Kogenaru M; de Vos MG; Tans SJ
    Crit Rev Biochem Mol Biol; 2009; 44(4):169-74. PubMed ID: 19552615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutations in distant residues moderately increase the enantioselectivity of Pseudomonas fluorescens esterase towards methyl 3bromo-2-methylpropanoate and ethyl 3phenylbutyrate.
    Horsman GP; Liu AM; Henke E; Bornscheuer UT; Kazlauskas RJ
    Chemistry; 2003 May; 9(9):1933-9. PubMed ID: 12740839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the effect of sex on empirical fitness landscapes.
    de Visser JA; Park SC; Krug J
    Am Nat; 2009 Jul; 174 Suppl 1():S15-30. PubMed ID: 19456267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manipulating the expression rate and enantioselectivity of an epoxide hydrolase by using directed evolution.
    Reetz MT; Zheng H
    Chembiochem; 2011 Jul; 12(10):1529-35. PubMed ID: 21567703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distributions of enzyme residues yielding mutants with improved substrate specificities from two different directed evolution strategies.
    Paramesvaran J; Hibbert EG; Russell AJ; Dalby PA
    Protein Eng Des Sel; 2009 Jul; 22(7):401-11. PubMed ID: 19502357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strategies for the in vitro evolution of protein function: enzyme evolution by random recombination of improved sequences.
    Moore JC; Jin HM; Kuchner O; Arnold FH
    J Mol Biol; 1997 Sep; 272(3):336-47. PubMed ID: 9325094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamical interpretation of evolutionary dynamics on a fitness landscape in an evolution reactor, II.
    Aita T; Morinaga S; Husimi Y
    Bull Math Biol; 2005 May; 67(3):613-35. PubMed ID: 15820744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combination of computational prescreening and experimental library construction can accelerate enzyme optimization by directed evolution.
    Funke SA; Otte N; Eggert T; Bocola M; Jaeger KE; Thiel W
    Protein Eng Des Sel; 2005 Nov; 18(11):509-14. PubMed ID: 16203748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iterative saturation mutagenesis: a powerful approach to engineer proteins by systematically simulating Darwinian evolution.
    Acevedo-Rocha CG; Hoebenreich S; Reetz MT
    Methods Mol Biol; 2014; 1179():103-28. PubMed ID: 25055773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.