These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 18713155)

  • 41. Using data-driven phenotyping to investigate the impact of sex on 3D human facial surface morphology.
    Matthews HS; Mahdi S; Penington AJ; Marazita ML; Shaffer JR; Walsh S; Shriver MD; Claes P; Weinberg SM
    J Anat; 2023 Aug; 243(2):274-283. PubMed ID: 36943032
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Cross-Sectional Study to Understand 3D Facial Differences in a Population of African Americans and Caucasians.
    Kau CH; Wang J; Davis M
    Eur J Dent; 2019 Oct; 13(4):485-496. PubMed ID: 31891965
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Three-dimensional analysis techniques--Part 2: Laser scanning: a quantitative three-dimensional soft-tissue analysis using a color-coding system.
    McCance AM; Moss JP; Fright WR; Linney AD; James DR
    Cleft Palate Craniofac J; 1997 Jan; 34(1):46-51. PubMed ID: 9003911
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Construction and visualisation of three-dimensional facial statistics.
    Tiddeman B; Duffy N; Rabey G
    Comput Methods Programs Biomed; 2000 Aug; 63(1):9-20. PubMed ID: 10927150
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Morphological differences of facial soft tissue contours from child to adult of Japanese males: a three-dimensional cross-sectional study.
    Murakami D; Inada E; Saitoh I; Takemoto Y; Morizono K; Kubota N; Iwasaki T; Oku T; Yamasaki Y
    Arch Oral Biol; 2014 Dec; 59(12):1391-9. PubMed ID: 25214309
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Longitudinal study of cephalometric soft tissue profile traits between the ages of 6 and 18 years.
    Bergman RT; Waschak J; Borzabadi-Farahani A; Murphy NC
    Angle Orthod; 2014 Jan; 84(1):48-55. PubMed ID: 23834271
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Facial soft tissue changes during the pre-pubertal and pubertal growth phase: a mixed longitudinal laser-scanning study.
    Primozic J; Perinetti G; Contardo L; Ovsenik M
    Eur J Orthod; 2017 Feb; 39(1):52-60. PubMed ID: 26888830
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sexual dimorphism in the facial morphology of adult humans: A three-dimensional analysis.
    Tanikawa C; Zere E; Takada K
    Homo; 2016 Feb; 67(1):23-49. PubMed ID: 26617056
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Facial morphology differences in monozygotic twins: a retrospective stereophotogrammetric study.
    Onem Ozbilen E; Basal E; Yilmaz HN; Biren S
    Angle Orthod; 2023 Nov; 93(6):706-711. PubMed ID: 37407504
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Visualizing three-dimensional facial soft tissue changes following orthognathic surgery.
    Miller L; Morris DO; Berry E
    Eur J Orthod; 2007 Feb; 29(1):14-20. PubMed ID: 16957060
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evaluation of facial soft tissue changes with optical surface scan after surgical correction of Class III deformities.
    Soncul M; Bamber MA
    J Oral Maxillofac Surg; 2004 Nov; 62(11):1331-40. PubMed ID: 15510353
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A new method for automatic tracking of facial landmarks in 3D motion captured images (4D).
    Al-Anezi T; Khambay B; Peng MJ; O'Leary E; Ju X; Ayoub A
    Int J Oral Maxillofac Surg; 2013 Jan; 42(1):9-18. PubMed ID: 23218511
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Three-dimensional facial architecture in normodivergent class I Caucasian subjects.
    Ghoubril JV; Abou Obeid FM
    Odontostomatol Trop; 2013 Jun; 36(142):5-14. PubMed ID: 24073535
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Soft-tissue facial morphometry from 6 years to adulthood: a three-dimensional growth study using a new modeling.
    Ferrario VF; Sforza C; Poggio CE; Schmitz JH
    Plast Reconstr Surg; 1999 Mar; 103(3):768-78. PubMed ID: 10077065
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Head-and-face shape variations of U.S. civilian workers.
    Zhuang Z; Shu C; Xi P; Bergman M; Joseph M
    Appl Ergon; 2013 Sep; 44(5):775-84. PubMed ID: 23399025
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Assessment of some problematic factors in facial image identification using a 2D/3D superimposition technique.
    Atsuchi M; Tsuji A; Usumoto Y; Yoshino M; Ikeda N
    Leg Med (Tokyo); 2013 Sep; 15(5):244-8. PubMed ID: 23886899
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Three-dimensional mixed longitudinal study of facial growth changes and variability of facial form in preschool children using stereophotogrammetry.
    Kočandrlová K; Dupej J; Hoffmannová E; Velemínská J
    Orthod Craniofac Res; 2021 Nov; 24(4):511-519. PubMed ID: 33345464
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Craniofacial growth: a three-dimensional soft-tissue study from 6 years to adulthood.
    Ferrario VF; Sforza C; Poggio CE; Schmitz JH
    J Craniofac Genet Dev Biol; 1998; 18(3):138-49. PubMed ID: 9785218
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Three-dimensional shape variation and sexual dimorphism of the face, nose, and mouth of Japanese individuals.
    Imaizumi K; Taniguchi K; Ogawa Y; Matsuzaki K; Maekawa H; Nagata T; Mochimaru M; Kouchi M
    Forensic Sci Int; 2019 Sep; 302():109878. PubMed ID: 31377687
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Uniform 3D meshes to establish normative facial averages of healthy infants during the first year of life.
    Brons S; Meulstee JW; Nada RM; Kuijpers MAR; Bronkhorst EM; Bergé SJ; Maal TJJ; Kuijpers-Jagtman AM
    PLoS One; 2019; 14(5):e0217267. PubMed ID: 31107914
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.